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Prefaces

Preface to the English Edition

An entire generation of mathematicians has grown up during the time be-
tween the appearance of the first edition of this textbook and the publication
of the fourth edition, a translation of which is before you. The book is famil-
iar to many people, who either attended the lectures on which it is based or
studied out of it, and who now teach others in universities all over the world.
I am glad that it has become accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university
students and teachers specializing in mathematics and natural sciences, and
at all those who wish to see both the rigorous mathematical theory and
examples of its effective use in the solution of real problems of natural science.

Note that Archimedes, Newton, Leibniz, Euler, Gauss, Poincaré, who are
held in particularly high esteem by us, mathematicians, were more than mere
mathematicians. They were scientists, natural philosophers. In mathematics
resolving of important specific questions and development of an abstract gen-
eral theory are processes as inseparable as inhaling and exhaling. Upsetting
this balance leads to problems that sometimes become significant both in
mathematical education and in science in general.

The textbook exposes classical analysis as it is today, as an integral part
of the unified Mathematics, in its interrelations with other modern mathe-
matical courses such as algebra, differential geometry, differential equations,
complex and functional analysis.

Rigor of discussion is combined with the development of the habit of
working with real problems from natural sciences. The course exhibits the
power of concepts and methods of modern mathematics in exploring spe-
cific problems. Various examples and numerous carefully chosen problems,
including applied ones, form a considerable part of the textbook. Most of the
fundamental mathematical notions and results are introduced and discussed
along with information, concerning their history, modern state and creators.
In accordance with the orientation toward natural sciences, special attention
is paid to informal exploration of the essence and roots of the basic concepts
and theorems of calculus, and to the demonstration of numerous, sometimes
fundamental, applications of the theory.
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For instance, the reader will encounter here the Galilean and Lorentz
transforms, the formula for rocket motion and the work of nuclear reac-
tor, Euler’s theorem on homogeneous functions and the dimensional analysis
of physical quantities, the Legendre transform and Hamiltonian equations
of classical mechanics, elements of hydrodynamics and the Carnot’s theo-
rem from thermodynamics, Maxwell’s equations, the Dirac delta-function,
distributions and the fundamental solutions, convolution and mathematical
models of linear devices, Fourier series and the formula for discrete coding
of a continuous signal, the Fourier transform and the Heisenberg uncertainty
principle, differential forms, de Rham cohomology and potential fields, the
theory of extrema and the optimization of a specific technological process,
numerical methods and processing the data of a biological experiment, the
asymptotics of the important special functions, and many other subjects.

Within each major topic the exposition is, as a rule, inductive, sometimes
proceeding from the statement of a problem and suggestive heuristic consider-
ations concerning its solution, toward fundamental concepts and formalisms.
Detailed at first, the exposition becomes more and more compressed as the
course progresses. Beginning ab ovo the book leads to the most up-to-date
state of the subject.

Note also that, at the end of each of the volumes, one can find the list
of the main theoretical topics together with the corresponding simple, but
nonstandard problems (taken from the midterm exams), which are intended
to enable the reader both determine his or her degree of mastery of the
material and to apply it creatively in concrete situations.

More complete information on the book and some recommendations for
its use in teaching can be found below in the prefaces to the first and second
Russian editions.

Moscow, 2003 V. Zorich
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Preface to the Fourth Russian Edition

The time elapsed since the publication of the third edition has been too short
for me to receive very many new comments from readers. Nevertheless, some
errors have been corrected and some local alterations of the text have been
made in the fourth edition.

Moscow, 2002 V. Zorich

Preface to the Third Russian edition

This first part of the book is being published after the more advanced Part
2 of the course, which was issued earlier by the same publishing house. For
the sake of consistency and continuity, the format of the text follows that
adopted in Part 2. The figures have been redrawn. All the misprints that
were noticed have been corrected, several exercises have been added, and the
list of further readings has been enlarged. More complete information on the
subject matter of the book and certain characteristics of the course as a whole
are given below in the preface to the first edition.

Moscow, 2001 _ V. Zorich

Preface to the Second Russian Edition

In this second edition of the book, along with an attempt to remove the mis-
prints that occurred in the first edition,! certain alterations in the exposition
have been made (mainly in connection with the proofs of individual theo-
rems), and some new problems have been added, of an informal nature as a
rule.

The preface to the first edition of this course of analysis (see below) con-
tains a general description of the course. The basic principles and the aim
of the exposition are also indicated there. Here I would like to make a few
remarks of a practical nature connected with the use of this book in the
classroom.

Usually both the student and the teacher make use of a text, each for his
own purposes.

At the beginning, both of them want most of all a book that contains,
along with the necessary theory, as wide a variety of substantial examples

! No need to worry: in place of the misprints that were corrected in the plates
of the first edition (which were not preserved), one may be sure that a host of
new misprints will appear, which so enliven, as Euler believed, the reading of a
mathematical text.
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of its applications as possible, and, in addition, explanations, historical and
scientific commentary, and descriptions of interconnections and perspectives
for further development. But when preparing for an examination, the student
mainly hopes to see the material that will be on the examination. The teacher
likewise, when preparing a course, selects only the material that can and must
be covered in the time alloted for the course.

In this connection, it should be kept in mind that the text of the present
book is noticeably more extensive than the lectures on which it is based. What
caused this difference? First of all, the lectures have been supplemented by
essentially an entire problem book, made up not so much of exercises as sub-
stantive problems of science or mathematics proper having a connection with
the corresponding parts of the theory and in some cases significantly extend-
ing them. Second, the book naturally contains a much larger set of examples
illustrating the theory in action than one can incorporate in lectures. Third
and finally, a number of chapters, sections, or subsections were consciously
written as a supplement to the traditional material. This is explained in the
sections “On the introduction” and “On the supplementary material” in the
preface to the first edition.

I would also like to recall that in the preface to the first edition I tried to
warn both the student and the beginning teacher against an excessively long
study of the introductory formal chapters. Such a study would noticeably
delay the analysis proper and cause a great shift in emphasis.

To show what in fact can be retained of these formal introductory chap-
ters in a realistic lecture course, and to explain in condensed form the syllabus
for such a course as a whole while pointing out possible variants depending
on the student audience, at the end of the book I give a list of problems
from the midterm exam, along with some recent examination topics for the
first two semesters, to which this first part of the book relates. From this list
the professional will of course discern the order of exposition, the degree of
development of the basic concepts and methods, and the occasional invoca-
tion of material from the second part of the textbook when the topic under
consideration is already accessible for the audience in a more general form.2

In conclusion I would like to thank colleagues and students, both known
and unknown to me, for reviews and constructive remarks on the first edition
of the course. It was particularly interesting for me to read the reviews of
A.N.Kolmogorov and V.I. Arnol’d. Very different in size, form, and style,
these two have, on the professional level, so many inspiring things in common.

Moscow, 1997 V. Zorich

2 Some of the transcripts of the corresponding lectures have been published and I
give formal reference to the booklets published using them, although I understand
that they are now available only with difficulty. (The lectures were given and
published for limited circulation in the Mathematical College of the Independent
University of Moscow and in the Department of Mechanics and Mathematics of
Moscow State University.)
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From the Preface to the First Russian Edition

The creation of the foundations of the differential and integral calculus by
Newton and Leibniz three centuries ago appears even by modern standards
to be one of the greatest events in the history of science in general and
mathematics in particular.

Mathematical analysis (in the broad sense of the word) and algebra have
intertwined to form the root system on which the ramified tree of modern
mathematics is supported and through which it makes its vital contact with
the nonmathematical sphere. It is for this reason that the foundations of
analysis are included as a necessary element of even modest descriptions of
so-called higher mathematics; and it is probably for that reason that so many
books aimed at different groups of readers are devoted to the exposition of
the fundamentals of analysis.

This book has been aimed primarily at mathematicians desiring (as is
proper) to obtain thorough proofs of the fundamental theorems, but who are
at the same time interested in the life of these theorems outside of mathe-
matics itself.

The characteristics of the present course connected with these circum-
stances reduce basically to the following:

In the exposition. Within each major topic the exposition is as a rule induc-
tive, sometimes proceeding from the statement of a problem and suggestive
heuristic considerations toward its solution to fundamental concepts and for-
malisms.

Detailed at first, the exposition becomes more and more compressed as
the course progresses.

An emphasis is placed on the efficient machinery of smooth analysis. In
the exposition of the theory I have tried (to the extent of my knowledge) to
point out the most essential methods and facts and avoid the temptation of
a minor strengthening of a theorem at the price of a major complication of
its proof. )

The exposition is geometric throughout wherever this seemed worthwhile
in order to reveal the essence of the matter.

The main text is supplemented with a rather large collection of examples,
and nearly every section ends with a set of problems that I hope will sig-
nificantly complement even the theoretical part of the main text. Following
the wonderful precedent of Pélya and Szegd, I have often tried to present
a beautiful mathematical result or an important application as a series of
problems accessible to the reader.

The arrangement of the material was dictated not only by the architecture
of mathematics in the sense of Bourbaki, but also by the position of analysis
as a component of a unified mathematical or, one should rather say, natural-
science/mathematical education.

In content. This course is being published in two books (Part 1 and Part 2).
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The present Part 1 contains the differential and integral calculus of func-
tions of one variable and the differential calculus of functions of several vari-
ables.

In differential calculus we emphasize the role of the differential as a linear
standard for describing the local behavior of the variation of a variable. In ad-
dition to numerous examples of the use of differential calculus to study func-
tional relations (monotonicity, extrema) we exhibit the role of the language
of analysis in writing simple differential equations — mathematical models of
real-world phenomena and the substantive problems connected with them.

We study a number of such problems (for example, the motion of a body of
variable mass, a nuclear reactor, atmospheric pressure, motion in a resisting
medium) whose solution leads to important elementary functions. Full use is
made of the language of complex variables; in particular, Euler’s formula is
derived and the unity of the fundamental elementary functions is shown.

The integral calculus has consciously been explained as far as possible
using intuitive material in the framework of the Riemann integral. For the
majority of applications, this is completely adequate.? Various applications
of the integral are pointed out, including those that lead to an improper in-
tegral (for example, the work involved in escaping from a gravitational field,
and the escape velocity for the Earth’s gravitational field) or to elliptic func-
tions (motion in a gravitational field in the presence of constraints, pendulum
motion.)

The differential calculus of functions of several variables is very geometric.
In this topic, for example, one studies such important and useful consequences
of the implicit function theorem as curvilinear coordinates and local reduction
to canonical form for smooth mappings (the rank theorem) and functions
(Morse’s lemma), and also the theory of extrema with constraint.

Results from the theory of continuous functions and differential calculus
are summarized and explained in a general invariant form in two chapters
that link up naturally with the differential calculus of real-valued functions
of several variables. These two chapters open the second part of the course.
The second book, in which we also discuss the integral calculus of functions
of several variables up to the general Newton—Leibniz—Stokes formula thus
acquires a certain unity.

We shall give more complete information on the second book in its preface.
At this point we add only that, in addition to the material already mentioned,
it contains information on series of functions (power series and Fourier series
included), on integrals depending on a parameter (including the fundamental
solution, convolution, and the Fourier transform), and also on asymptotic
expansions (which are usually absent or insufficiently presented in textbooks).

We now discuss a few particular problems.

3 The “stronger” integrals, as is well known, require fussier set-theoretic consider-
ations, outside the mainstream of the textbook, while adding hardly anything to
the effective machinery of analysis, mastery of which should be the first priority.
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On the introduction. I have not written an introductory survey of the subject,
since the majority of beginning students already have a preliminary idea of
differential and integral calculus and their applications from high school, and
I could hardly claim to write an even more introductory survey. Instead, in the
first two chapters I bring the former high-school student’s understanding of
sets, functions, the use of logical symbolism, and the theory of a real number
to a certain mathematical completeness.

This material belongs to the formal foundations of analysis and is aimed
primarily at the mathematics major, who may at some time wish to trace the
logical structure of the basic concepts and principles used in classical analysis.
Mathematical analysis proper begins in the third chapter, so that the reader
who wishes to get effective machinery in his hands as quickly as possible
and see its applications can in general begin a first reading with Chapter 3,
turning to the earlier pages whenever something seems nonobvious or raises
a question which hopefully I also have thought of and answered in the early
chapters.

On the division of material. The material of the two books is divided into
chapters numbered continuously. The sections are numbered within each
chapter separately; subsections of a section are numbered only within that
section. Theorems, propositions, lemmas, definitions, and examples are writ-
ten in italics for greater logical clarity, and numbered for convenience within
each section.

On the supplementary material. Several chapters of the book are written as a
natural extension of classical analysis. These are, on the one hand, Chapters
1 and 2 mentioned above, which are devoted to its formal mathematical
foundations, and on the other hand, Chapters 9, 10, and 15 of the second
part, which give the modern view of the theory of continuity, differential and
integral calculus, and finally Chapter 19, which is devoted to certain effective
asymptotic methods of analysis.

The question as to which part of the material of these chapters should be
included in a lecture course depends on the audience and can be decided by
the lecturer, but certain fundamental concepts introduced here are usually
present in any exposition of the subject to mathematicians.

In conclusion, I would like to thank those whose friendly and competent
professional aid has been valuable and useful to me during the work on this
book.

The proposed course was quite detailed, and in many of its aspects it
was coordinated with subsequent modern university mathematics courses —
such as, for example, differential equations, differential geometry, the theory
of functions of a complex variable, and functional analysis. In this regard
my contacts and discussions with V.I. Arnol’d and the especially numerous
ones with S. P. Novikov during our joint work with the so-called “experimental
student group in natural-science/mathematical education” in the Department
of Mathematics at MSU, were very useful to me.
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I received much advice from N.V.Efimov, chair of the Section of Math-
ematical Analysis in the Department of Mechanics and Mathematics at
Moscow State University.

I am also grateful to colleagues in the department and the section for
remarks on the mimeographed edition of my lectures.

Student transcripts of my recent lectures which were made available to
me were valuable during the work on this book, and I am grateful to their
owners.

I am deeply grateful to the official reviewers L. D. Kudryavtsev, V. P. Pet-
renko, and S.B.Stechkin for constructive comments, most of which were
taken into account in the book now offered to the reader.

Moscow, 1980 V. Zorich
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1 Some General Mathematical Concepts
and Notation

1.1 Logical Symbolism

1.1.1 Connectives and Brackets

The language of this book, like the majority of mathematical texts, consists
of ordinary language and a number of special symbols from the theories
being discussed. Along with the special symbols, which will be introduced
as needed, we use the common symbols of mathematical logic -, A, V, =,
and < to denote respectively negation (not) and the logical connectives and,
or, implies, and is equivalent to.!

For example, take three statements of independent interest:

L. If the notation is adapted to the discoveries. .., the work of thought is
marvelously shortened. (G. Leibniz)?

P. Mathematics is the art of calling different things by the same name.
(H. Poincaré).3

G. The great book of nature is written in the language of mathematics.
(Galileo).

Then, according to the notation given above,

! The symbol & is often used in logic in place of A. Logicians more often write
the implication symbol = as — and the relation of logical equivalence as +—
or +>. However, we shall adhere to the symbolism indicated in the text so as not
to overburden the symbol —, which has been traditionally used in mathematics
to denote passage to the limit.

2 G.W.Leibniz (1646-1716) — outstanding German scholar, philosopher, and
mathematician to whom belongs the honor, along with Newton, of having dis-
covered the foundations of the infinitesimal calculus.

3 H.Poincaré (1854-1912) — French mathematician whose brilliant mind trans-
formed many areas of mathematics and achieved fundamental applications of it
in mathematical physics.

4 Galileo Galilei (1564-1642) — Italian scholar and outstanding scientific experi-
menter. His works lie at the foundation of the subsequent physical concepts of
space and time. He is the father of modern physical science.
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Notation Meaning
L=P L implies P
L& P L is equivalent to P

((L= P)A(=P)) = (=L)  If P follows from L and P is false,
then L is false
~(LeG)V(Peaq) G is not equivalent either to L or to P

We see that it is not always reasonable to use only formal notation, avoid-
ing colloquial language.

We remark further that parentheses are used in the writing of complex
statements composed of simpler ones, fulfilling the same syntactical function
as in algebraic expressions. As in algebra, in order to avoid the overuse of
parentheses one can make a convention about the order of operations. To
that end, we shall agree on the following order of priorities for the symbols:

- NV, =, &

With this convention the expression ~AABVC = D should be interpreted
as (((wA) AB)VC) = D, and the relation AV B = C as (AV B) = C, not
as AV (B=C).

We shall often give a different verbal expression to the notation A = B,
which means that A implies B, or, what is the same, that B follows from A,
saying that B is a mecessary criterion or necessary condition for A and A in
turn is a sufficient condition or sufficient criterion for B, so that the relation
A & B can be read in any of the following ways:

A is necessary and sufficient for B;

A hold when B holds, and only then;

A if and only if B;

A is equivalent to B.

Thus the notation A < B means that A implies B and simultaneously B
implies A.

The use of the conjunction and in the expression A A B requires no ex-
planation.

It should be pointed out, however, that in the expression A V B the con-
junction or is not exclusive, that is, the statement A V B is regarded as true
if at least one of the statements A and B is true. For example, let  be a
real number such that 22 — 3z 42 = 0. Then we can write that the following
relation holds:

(z2-3z+2=0)e(z=1)V(z=2).

1.1.2 Remarks on Proofs

A typical mathematical proposition has the form A = B, where A is the
assumption and B the conclusion. The proof of such a proposition consists of
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constructing a chain A = Cy = --- = C, = B of implications, each element
of which is either an axiom or a previously proved proposition.®

In proofs we shall adhere to the classical rule of inference: if A is true and
A = B, then B is also true.

In proof by contradiction we shall also use the law of excluded middle,
by virtue of which the statement AV —A (A or not-A) is considered true
independently of the specific content of the statement A. Consequently we
simultaneously accept that —=(—A) < A, that is, double negation is equivalent
to the original statement.

1.1.3 Some Special Notation

For the reader’s convenience and to shorten the writing, we shall agree to
denote the end of a proof by the symbol O.

We also agree, whenever convenient, to introduce definitions using the
special symbol := (equality by definition), in which the colon is placed on
the side of the object being defined.

For example, the notation

b
/ f@de = lim o(fiP.6)

defines the left-hand side in termé of the right-hand side, whose meaning is
assumed to be known.
Similarly, one can introduce abbreviations for expressions already defined.

For example
n

> f(&) Az = o(f; P,€)

=1
introduces the notation o(f; P, ) for the sum of special form on the left-hand
. side.

1.1.4 Concluding Remarks

We note that here we have spoken essentially about notation only, without
analyzing the formalism of logical deductions and without touching on the
profound questions of truth, provability, and deducibility, which form the
subject matter of mathematical logic.

How are we to construct mathematical analysis if we have no formalization
of logic? There may be some consolation in the fact that we always know more
than we can formalize at any given time, or perhaps we should say we know
how to do more than we can formalize. This last sentence may be clarified by

® The notation A = B => C will be used as an abbreviation for (A= B)A(B=>C).
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the well-known proverb of the centipede who forgot how to walk when asked
to explain exactly how it dealt with so many legs.

The experience of all the sciences convinces us that what was consid-
ered clear or simple and unanalyzable yesterday may be subjected to re-
examination or made more precise today. Such was the case (and will un-
doubtedly be the case again) with many concepts of mathematical analysis,
the most important theorems and machinery of which were discovered in the
seventeenth and eighteenth centuries, but which acquired its modern formal-
ized form with a unique interpretation that is probably responsible for its
being generally accessible, only after the creation of the theory of limits and
the fully developed theory of real numbers needed for it in the nineteenth
century.

This is the level of the theory of real numbers from which we shall begin
to construct the whole edifice of analysis in Chap. 2.

As already noted in the preface, those who wish to make a rapid ac-
quaintance with the basic concepts and effective machinery of differential
and integral calculus proper may begin immediately with Chap. 3, turning
to particular places in the first two chapters only as needed.

1.1.5 Exercises

We shall denote true assertions by the symbol 1 and false ones by 0. Then to each
of the statements A, AA B, AV B, and A = B one can associate a so-called
truth table, which indicates its truth or falsehood depending on the truth of the
statements A and B. These tables are a formal definition of the logical operations
-, A, V, =. Here they are:

| -4 | [4]o]r AAB B
Ao
-A 1[0
0 [ojo
10
A A
0 |of1 0 |11
1 ]1]1 1 ]0j1

1. Check whether all of these tables agree with your concept of the corresponding
logical operation. (In particular, pay attention to the fact that if A is false, then
the implication A = B is always true.)
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2. Show that the following simple, but very useful relations, which are widely used
in mathematical reasoning, are true:

a) "(AAB) & -~AV -B;

b) ~(AV B) & A A-B;

¢) (A= B) & (-B = -A);

d) (A= B) & (~AV B);

e) (A= B) & AAN-B.

1.2 Sets and Elementary Operations on them

1.2.1 The Concept of a Set

Since the late nineteenth and early twentieth centuries the most universal
language of mathematics has been the language of set theory. This is even
manifest in one of the definitions of mathematics as the science that studies
different structures (relations) on sets.®

“We take a set to be an assemblage of definite, perfectly dlstlngulshable
objects of our intuition or our thought into a coherent whole.” Thus did
Georg Cantor,” the creator of set theory, describe the concept of a set.

Cantor’s description cannot, of course, be considered a definition, since it
appeals to concepts that may be more complicated than the concept of a set
itself (and in any case, have not been defined previously). The purpose of this
description is to explain the concept by connecting it with other concepts.

The basic assumptions of Cantorian (or, as it is generally called, “naive”)
set theory reduce to the following statements.

19. A set may consist of any distinguishable objects.

20, A set is unambiguously determined by the collection of objects that com-
prise it.

- 3%, Any property defines the set of objects having that property.

If x is an object, P is a property, and P(z) denotes the assertion that
has property P, then the class of objects having the property P is denoted
{a:l P(x)}. The objects that constitute a class or set are called the elements
of the class or set.

The set consisting of the elements xi,...,x, is usually denoted
{z1,...,Zn}. Wherever no confusion can arise we allow ourselves to denote
the one-element set {a} simply as a.

6 Bourbaki, N. “The architecture of mathematics” in: N. Bourbaki, Elements of the
history of mathematics, translated from the French by John Meldrum, Springer,
New York, 1994.

" G.Cantor (1845-1918) — German mathematician, the creator of the theory of
infinite sets and the progenitor of set-theoretic language in mathematics.
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The words “class”, “family”, “totality”, and “collection” are used as syn-
onyms for “set” in naive set theory.
The following examples illustrate the application of this terminology:

— the set of letters “a” occurring in the word “I”;

— the set of wives of Adam,;

— the collection of ten decimal digits;

— the family of beans;

— the set of grains of sand on the Earth;

— the totality of points of a plane equidistant from two given points of the
plane;

— the family of sets;

— the set of all sets.

The variety in the possible degree of determinacy in the definition of a
set leads one to think that a set is, after all, not such a simple and harmless
concept.

And in fact the concept of the set of all sets, for example, is simply
contradictory.

Proof. Indeed, suppose that for a set M the notation P(M) means that M
is not an element of itself.

Consider the class K = {M| P(M)} of sets having property P.

If K is a set either P(K) or =P(K) is true. However, this dichotomy does
not apply to K. Indeed, P(K) is impossible; for it would then follow from
the definition of K that K contains K as an element, that is, that =P (K) is
true; on the other hand, —~P(K) is also impossible, since that means that K
contains K as an element, which contradicts the definition of K as the class
of sets that do not contain themselves as elements.

Consequently K is not a set. O

This is the classical paradox of Russell,® one of the paradoxes to which
the naive conception of a set leads.

In modern mathematical logic the concept of a set has been subjected to
detailed analysis (with good reason, as we see). However, we shall not go into
that analysis. We note only that in the current axiomatic set theories a set
is defined as a mathematical object having a definite collection of properties.

The description of these properties constitutes an axiom system. The core
of axiomatic set theory is the postulation of rules by which new sets can be
formed from given ones. In general any of the current axiom systems is such
that, on the one hand, it eliminates the known contradictions of the naive
theory, and on the other hand it provides freedom to operate with specific
sets that arise in different areas of mathematics, most of all, in mathematical
analysis understood in the broad sense of the word.

8 B.Russell (1872-1970) — British logician, philosopher, sociologist and social ac-
tivist.
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Having confined ourselves for the time being to remarks on the concept of
a set, we pass to the description of the set-theoretic relations and operations
most commonly used in analysis.

Those wishing a more detailed acquaintance with the concept of a set
should study Subsect. 1.4.2 in the present chapter or turn to the specialized
literature.

1.2.2 The Inclusion Relation

As has already been pointed out, the objects that comprise a set are usually
called the elements of the set. We tend to denote sets by uppercase letters
and their elements by the corresponding lowercase letters.

The statement, “z is an element of the set X” is written briefly as

zeX (or X 31),

and its negation as
z¢ X (or X #z).

When statements about sets are written, frequent use is made of the
logical operators 3 (“there exists” or “there are”) and V (“every” or “for any”)
which are called the existence and generalization quantifiers respectively.

For example, the string Vz((z € A) < (z € B)) means that for any object
x the relations * € A and x € B are equivalent. Since a set is completely
determined by its elements, this statement is usually written briefly as

A=B,

read “A equals B”, and means that the sets A and B are the same.

Thus two sets are equal if they consist of the same elements.

The negation of equality is usually written as A # B.

If every element of A is an element of B, we write A C B or B D A and
say that A is a subset of B or that B contains A or that B includes A. In this
connection the relation A C B between sets A and B is called the inclusion
relation (Fig. 1.1).

ACB

Fig. 1.1.
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Thus
(Ac B) :==Vz((z € A) = (z € B)) .

If AC B and A # B, we shall say that the inclusion A C B is strict or
that A is a proper subset of B.
Using these definitions, we can now conclude that

(A=B)& (ACB)A(BCA).
If M is a set, any property P distinguishes in M the subset
{z € M| P(x)}

consisting of the elements of M that have the property.
For example, it is obvious that

M={zeM|zecM}.

On the other hand, if P is taken as a property that no element of the set M
has, for example, P(z) := (z # x), we obtain the set

@ ={zeMz#z},

called the empty subset of M.

1.2.3 Elementary Operations on Sets

Let A and B be subsets of a set M.
a. The union of A and B is the set

AUB:={z € M|(z € A)V (z € B)},

consisting of precisely the elements of M that belong to at least one of the
sets A and B (Fig. 1.2).

b. The intersection of A and B is the set

ANB:={ze M|(zx € A)A(z € B)},
formed by the elements of M that belong to both sets A and B (Fig. 1.3).
c. The difference between A and B is the set

A\B:={ze M|(zx € A)AN(z ¢ B)},

consisting of the elements of A that do not belong to B (Fig. 1.4).

The difference between the set M and one of its subsets A is usually called
the complement of A in M and denoted Cps A, or CA when the set in which
the complement of A is being taken is clear from the context (Fig. 1.5).
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AUB ANB

M M

Fig. 1.2. Fig. 1.3. Fig. 1.4. Fig. 1.5.

Example. As an illustration of the interaction of the concepts just intro-
duced, let us verify the following relations (the so-called de Morgan® rules):

CM(AUB) =CyANnCyB, (1.1)
CM(AﬂB) =CyAUCYyB. (1.2)

Proof. We shall prove the first of these equalities by way of example:

(zreCy(AUB)) = (x¢(AUB))=>((x§§A)/\(x§§B)) =
= (.’I)ECMA)/\(JJECMB) = (.’I)E (CMAOCMB)) .

Thus we have established that
CM(AUB) C (CMAQCMB) . (13)
On the other hand,

(z € (CuANCMB)) = ((x € CuA) A (z € CuB)) =
= ((a:¢A)/\(x§€B)) = (xgé (AUB)) =
= (z € Cu(AUB)),

that is,
(CuANCyB) C Cy(AUB). (1.4)

Equation (1.1) follows from (1.3) and (1.4). O

d. The direct (Cartesian) product of sets. For any two sets A and B one can
form a new set, namely the pair {A, B} = {B, A}, which consists of the sets
A and B and no others. This set has two elements if A # B and one element
if A=B.

This set is called the unordered pair of sets A and B, to be distinguished
from the ordered pair (A, B) in which the elements are endowed with ad-
ditional properties to distinguish the first and second elements of the pair

9 A.de Morgan (1806-1871) — Scottish mathematician.
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{A, B}. The equality
(A7 B ) = (07 D )
between two ordered pairs means by definition that A = C and B = D. In
particular, if A # B, then (A, B) # (B, A).
Now let X and Y be arbitrary sets. The set

XxY :={(z,9)|(zxe X)AN(yeY)},

formed by the ordered pairs (z, y) whose first element belongs to X and whose
second element belongs to Y, is called the direct or Cartesian product of the
sets X and Y (in that order!).

It follows obviously from the definition of the direct product and the
remarks made above about the ordered pair that in general X XY # Y x X.
Equality holds only if X =Y. In this last case we abbreviate X x X as X?2.

The direct product is also called the Cartesian product in honor of
Descartes,'® who arrived at the language of analytic geometry in terms of
a system of coordinates independently of Fermat.!! The familiar system of
Cartesian coordinates in the plane makes this plane precisely into the direct
product of two real axes. This familiar object shows vividly why the Cartesian
product depends on the order of the factors. For example, different points of
the plane correspond to the pairs (0,1) and (1,0).

In the ordered pair z = (1, %2), which is an element of the direct product
Z = X1 x X5 of the sets X; and X5, the element x; is called the first projection
of the pair z and denoted pr; z, while the element z is the second projection
of z and is denoted pryz.

By analogy with the terminology of analytic geometry, the projections of
an ordered pair are often called the (first and second) coordinates of the pair.

1.2.4 Exercises

In Exercises 1, 2, and 3 the letters A, B, and C denote subsets of a set M.

1. Verify the following relations.

a) (ACC)A(BCCO) & ((AUB) c c);

b) (C C A)A(C C B) & (CC (AN B));

¢) Cu (C’MA) = A;

d) (AC CuB) & (B C CuA);

e) (AC B) & (CmA D CuB).
10 R. Descartes (1596-1650) — outstanding French philosopher, mathematician and

physicist who made fundamental contributions to scientific thought and knowl-

1 ff%‘z;mat (1601-1665) — remarkable French mathematician, a lawyer by profes-

sion. He was one of the founders of a number of areas of modern mathematics:
analysis, analytic geometry, probability theory, and number theory.
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2. Prove the following statements.
a) AU(BUC)=(AUB)UC =: AUBUC;
b) AN(BNC)=(ANnB)NC =: ANBNC;
c) AN(BUC)=(ANB)U(ANC);
d) Au(BNC)=(AUB)N(AUCQC).

3. Verify the connection (duality) between the operations of union and intersection:
a) Cu(AUB) =CuANCuB;
b) Cu(ANB)=CmAUCMB.

4. Give geometric representations of the following Cartesian products.
a) The product of two line segments (a rectangle).
b) The product of two lines (a plane).
¢) The product of a line and a circle (an infinite cylindrical surface).
d) The product of a line and a disk (an infinite solid cylinder).
€) The product of two circles (a torus).
f) The product of a circle and a disk (a solid torus).

5. The set A = {(z1,22) € X?|z1 = x2} is called the diagonal of the Cartesian
square X2 of the set X. Give geometric representations of the diagonals of the sets
obtained in parts a), b), and e) of Exercise 4.

6. Show that
a) (X xY=0)e (X=0)V (Y =0),andif X xY # &, then
b)(AXxBCXxY)& (ACX)AN(BCY),
) (X xY)U(ZxY)=(XUZ)xY,
X xY)NX'xY)=(XnX)x (Y NY').
Here @ denotes the empty set, that is, the set having no elements.

7. By comparing the relations of Exercise 3 with relations a) and b) from Exercise
2 of Sect. 1.1, establish a correspondence between the logical operators -, A, V and
. the operations C, N, and U on sets.

1.3 Functions

1.3.1 The Concept of a Function (Mapping)

We shall now describe the concept of a functional relation, which is funda-
mental both in mathematics and elsewhere.

Let X and Y be certain sets. We say that there is a function defined on
X with values in Y if, by virtue of some rule f, to each element x € X there
corresponds an element y € Y.

In this case the set X is called the domain of definition of the function.
The symbol = used to denote a general element of the domain is called the
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argument of the function, or the independent variable. The element yo € Y
corresponding to a particular value zo € X of the argument z is called the
value of the function at zo, or the value of the function at the value x = xg
of its argument, and is denoted f(zp). As the argument z € X varies, the
value y = f(x) € Y, in general, varies depending on the values of z. For that
reason, the quantity y = f(z) is often called the dependent variable.

The set

f(X):={yeY|Iz((xe X)A(y=f(z)}

of values assumed by a function on elements of the set X will be called the
set of values or the range of the function.

The term “function” has a variety of useful synonyms in different areas
of mathematics, depending on the nature of the sets X and Y: mapping,
transformation, morphism, operator, functional. The commonest is mapping,
and we shall also use it frequently.

For a function (mapping) the following notations are standard:

f:x-y, x-Lvy.

When it is clear from the context what the domain and range of a function
are, one also uses the notation z — f(z) or y = f(z), but more frequently a
function in general is simply denoted by the single symbol f.

Two functions f; and fo are considered identical or equal if they have the
same domain X and at each element z € X the values fi(z) and f2(z) are
the same. In this case we write f; = fa.

If AC X and f: X — Y is a function, we denote by f|A or f|a the
function ¢ : A — Y that agrees with f on A. More precisely, f|a(z) := ¢(z)
ifz € A. The function f|4 is called the restriction of f to A, and the function
f: X — Y is called an extension or a continuation of ¢ to X.

We see that it is sometimes necessary to consider a function ¢ : A =Y
defined on a subset A of some set X while the range ¢(A) of ¢ may also
turn out be a subset of Y that is different from Y. In this connection, we
sometimes use the term domain of departure of the function to denote any
set X containing the domain of a function, and domain of arrival to denote
any subset of Y containing its range.

Thus, defining a function (mapping) involves specifying a triple (X, Y, f),
where

X is the set being mapped, or domain of the function;

Y is the set into which the mapping goes, or a domain of arrival of the
function;

f is the rule according to which a definite element y € Y is assigned to
each element x € X.

The asymmetry between X and Y that appears here reflects the fact that
the mapping goes from X to Y, and not the other direction.

Now let us consider some examples of functions.
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Ezample 1. The formulas | = 27r and V = §7TT3 establish functional rela-
tionships between the circumference [ of a circle and its radius r and between
the volume V of a ball and its radius r. Each of these formulas provides
a particular function f : Ry — R, defined on the set Ry of positive real
numbers with values in the same set.

Ezample 2. Let X be the set of inertial coordinate systems and ¢ : X — R
the function that assigns to each coordinate system z € X the value ¢(z) of
the speed of light in vacuo measured using those coordinates. The function
¢: X — R is constant, that is, for any = € X it has the same value c. (This
is a fundamental experimental fact.)

Ezample 3. The mapping G : R? — R? (the direct product R2 = R x R =
R; x R, of the time axis R; and the spatial axis R;) into itself defined by the
formulas

=z —t,

¢ =t,

is the classical Galilean transformation for transition from one inertial coor-
dinate system (z,t) to another system (z’,t') that is in motion relative to
the first at speed v.

The same purpose is served by the mapping L : R? — R? defined by the
relations

o T — vt
27

1-(3)
t = t_(}:)_?)x .

This is the well-known (one-dimensional) Lorentz'? transformation, which
plays a fundamental role in the special theory of relativity. The speed c is the
speed of light.

Ezample 4. The projection pr; : X1 x X2 — X; defined by the correspon-

dence X; x X2 3 (x1,22) RAEN z1 € X is obviously a function. The second
projection pr, : X7 X Xo — X3 is defined similarly.

Ezample 5. Let P(M) be the set of subsets of the set M. To each set
A € P(M) we assign the set CpyA € P(M), that is, the complement to
A in M. We then obtain a mapping Cus : P(M) — P(M) of the set P(M)
into itself.

12 H. A. Lorentz (1853-1928) — Dutch physicist. He discovered these transformations

in 1904, and Einstein made crucial use of them when he formulated his special
theory of relativity in 1905.
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Example 6. Let E C M. The real-valued function xg : M — R defined on
the set M by the conditions (xg(z) =1ifz € E) A(xe(z) =0ifz € CyE)
is called the characteristic function of the set E.

Ezample 7. Let M(X;Y) be the set of mappings of the set X into the set
Y and z¢ a fixed element of X. To any function f € M(X;Y) we assign
its value f(zo) € Y at the element zo. This relation defines a function F' :
M(X;Y) — Y. In particular, if Y = R, that is, Y is the set of real numbers,
then to each function f : X — R the function F : M(X;R) — R assigns
the number F(f) = f(zo). Thus F is a function defined on functions. For
convenience, such functions are called functionals.

Ezample 8. Let I' be the set of curves lying on a surface (for example, the
surface of the earth) and joining two given points of the surface. To each
curve v € I' one can assign its length. We then obtain a function F': I' =+ R
that often needs to be studied in order to find the shortest curve, or as it is
called, the geodesic between the two given points on the surface.

Ezample 9. Consider the set M (R;R) of real-valued functions defined on the
entire real line R. After fixing a number a € R, we assign to each function
f € M(R;R) the function f, € M(R;R) connected with it by the relation
fa(z) = f(z + a). The function f,(z) is usually called the translate or shift
of the function f by a. The mapping A : M(R;R) — M(R;R) that arises
in this way is called the translation of shift operator. Thus the operator A is
defined on functions and its values are also functions f, = A(f).

This last example might seem artificial if not for the fact that we encounter

real operators at every turn. Thus, any radio receiver is an operator f N f
that transforms electromagnetic signals f into acoustic signals f; any of our
sensory organs is an operator (transformer) with its own domain of definition
and range of values.

Ezxample 10. The position of a particle in space is determined by an ordered
triple of numbers (z,y, z) called its spatial coordinates. The set of all such
ordered triples can be thought of as the direct product R x R x R = R3 of
three real lines R.

A particle in motion is located at some point of the space R® having
coordinates (z(t),y(t), 2(t)) at each instant ¢ of time. Thus the motion of a
particle can be interpreted as a mapping v : R — R3, where R is the time
axis and R? is three-dimensional space.

If a system consists of n particles, its configuration is defined by the
position of each of the particles, that is, it is defined by an ordered set
(21,1, 215, T2, Y2, 225 - - - ; T, Yn, Zn) consisting of 3n numbers. The set of all
such ordered sets is called the configuration space of the system of n parti-
cles. Consequently, the configuration space of a system of n particles can be
interpreted as the direct product R3 x R3 x - .- x R3 = R3” of n copies of R3.

To the motion of a system of n particles there corresponds a mapping
v : R — R3" of the time axis into the configuration space of the system.
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Ezample 11. The potential energy U of a mechanical system is connected
with the mutual positions of the particles of the system, that is, it is deter-
mined by the configuration that the system has. Let ) be the set of possible
configurations of a system. This is a certain subset of the configuration space
of the system. To each position g € @Q there corresponds a certain value U(q)
of the potential energy of the system. Thus the potential energy is a function
U : @ — R defined on a subset @ of the configuration space with values in
the domain R of real numbers.

Example 12. The kinetic energy K of a system of n material particles depends
on their velocities. The total mechanical energy of the system E, defined as
E = K + U, that is, the sum of the kinetic and potential energies, thus
depends on both the configuration g of the system and the set of velocities
v of its particles. Like the configuration ¢ of the particles in space, the set of
velocities v, which consists of n three-dimensional vectors, can be defined as
an ordered set of 3n numbers. The ordered pairs (g, v) corresponding to the
states of the system form a subset @ in the direct product R3" x R3" = R®",
called the phase space of the system of n particles (to be distinguished from
the configuration space R3").

The total energy of the system is therefore a function E : & — R defined
on the subset @ of the phase space R and assuming values in the domain
R of real numbers.

In particular, if the system is closed, that is, no external forces are acting
on it, then by the law of conservation of energy, at each point of the set @ of
states of the system the function E will have the same value Fy € R.

1.3.2 Elementary Classification of Mappings

When a function f : X — Y is called a mapping, the value f(z) € Y that it
assumes at the element x € Y is usually called the image of z.

The image of a set A C X under the mapping f : X — Y is defined as
the set

fA)={yeY|3(ze AHA(y=f(2)}

consisting of the elements of Y that are images of elements of A.

The set

fY(B) :={z € X| f(z) € B}

consisting of the elements of X whose images belong to B is called the pre-
image (or complete pre-image) of the set B C Y (Fig. 1.6).

A mapping f: X — Y is said to be

surjective (a mapping of X onto Y) if f(X) =Y

injective (or an imbedding or injection) if for any elements x,z2 of X

(f(z1) = f(x2)) = (z1 = 2) ,

that is, distinct elements have distinct images;
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bijective (or a one-to-one correspondence) if it is both surjective and in-
jective.

If the mapping f : X — Y is bijective, that is, it is a one-to-one corre-
spondence between the elements of the sets X and Y, there naturally arises
a mapping

fFliy—=Xx,

defined as follows: if f(z) = y, then f~!(y) = =, that is, to each element
y € Y one assigns the element z € X whose image under the mapping f is y.
By the surjectivity of f there exists such an element, and by the injectivity
of f, it is unique. Hence the mapping f~! is well-defined. This mapping is
called the inverse of the original mapping f.

It is clear from the construction of the inverse mapping that f=!:Y — X
is itself bijective and that its inverse (f~!)~! : X — Y is the same as the
original mapping f: X — Y.

Thus the property of two mappings of being inverses is reciprocal: if f~!
is inverse for f, then f is inverse for f~1.

We remark that the symbol f~!(B) for the pre-image of a set B C Y
involves the symbol f~! for the inverse function; but it should be kept in
mind that the pre-image of a set is defined for any mapping f: X — Y, even
if it is not bijective and hence has no inverse.

1.3.3 Composition of Functions and Mutually Inverse Mappings

The operation of composition of functions is on the one hand a rich source
of new functions and on the other hand a way of resolving complex functions
into simpler ones.

If the mappings f : X —+ Y and g : Y — Z are such that one of them (in
our case g) is defined on the range of the other (f), one can construct a new
mapping

gof: X2,
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whose values on elements of the set X are defined by the formula

(go f)(z):=g(f(x)) .

The compound mapping g o f so constructed is called the composition of
the mapping f and the mapping g (in that order!).
Figure 1.7 illustrates the construction of the composition of the mappings

fand g.
5

Fig. 1.7.

You have already encountered the composition of mappings many times,
both in geometry, when studying the composition of rigid motions of the plane
or space, and in algebra in the study of “complicated” functions obtained by
composing the simplest elementary functions.

The operation of composition sometimes has to be carried out several
times in succession, and in this connection it is useful to note that it is
associative, that is,

ho(go f)=(hog)of.
Proof. Indeed,

ho(go f)(z) =h((go f)(z)) = h(g(f(2))) =
= (hog)(f(2) = ((hog)o f)(z). O

This circumstance, as in the case of addition and multiplication of several
numbers, makes it possible to omit the parentheses that prescribe the order
of the pairings.

If all the terms of a composition f,o---o f; are equal to the same function
f, we abbreviate it to f™.

It is well known, for example, that the square root of a positive number
a can be computed by successive approximations using the formula

1 a
Tnt1 = 5(1:71 + _) )
n

starting from any initial approximation z¢ > 0. This none other than the suc-
cessive computation of f™(zo), where f(z) = 3 (z + 2). Such a procedure, in
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which the value of the function computed at the each step becomes its argu-
ment at the next step, is called a recursive procedure. Recursive procedures
are widely used in mathematics.

We further note that even when both compositions go f and f o g are
defined, in general

gof#fog.

Indeed, let us take for example the two-element set {a,b} and the
mappings f : {a,b} — a and g : {a,b} — b. Then it is obvious that
go f:{a,b} — bwhile fog: {a,b} — a.

The mapping f : X — X that assigns to each element of X the element
itself, that is z ni) z, will be denoted ex and called the identity mapping
on X.

Lemma.
(9o f =ex) = (g is surjective) A (f is injective) .
Proof. Indeed, if f: X -Y,g:Y - X, andgo f=ex : X — X, then
X =ex(X) = (g0 f)(X) = 9(f(X)) C g(Y)

and hence g is surjective.
Further, if z; € X and z2 € X, then

(21 # x2) = (ex(x1) # ex(22)) = (9o f)(z1) # (90 f)(z2)) =
= (9(f(21))) # 9(F(z2)) = (f(21) # f(z2)) s

and therefore f is injective. O

Using the operation of composition of mappings one can describe mutually
inverse mappings.

Proposition. The mappings f : X - Y and g : Y — X are bijective and
mutually inverse to each other if and only if go f = ex and fog=-ey.

Proof. By the lemma the simultaneous fulfillment of the conditions go f =
ex and f o g = ey guarantees the surjectivity and injectivity, that is, the
bijectivity, of both mappings.

These same conditions show that y = f(z) if and only if z = g(y). O

In the preceding discussion we started with an explicit construction of the
inverse mapping. It follows from the proposition just proved that we could
have given a less intuitive, yet more symmetric definition of mutually inverse
mappings as those mappings that satisfy the two conditions go f = ex and
f og=ey. (In this connection, see Exercise 6 at the end of this section.)
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1.3.4 Functions as Relations. The Graph of a Function

In conclusion we return once again to the concept of a function. We note that
it has undergone a lengthy and rather complicated evolution.

The term function first appeared in the years from 1673 to 1692 in works
of G. Leibniz (in a somewhat narrower sense, to be sure). By the year 1698
the term had become established in a sense close to the modern one through
the correspondence between Leibniz and Johann Bernoulli.!3 (The letter of
Bernoulli usually cited in this regard dates to that same year.)

Many great mathematicians have participated in the formation of the
modern concept of functional dependence.

A description of a function that is nearly identical to the one given at the
beginning of this section can be found as early as the work of Euler (mid-
eighteenth century) who also introduced the notation f(z). By the early
nineteenth century it had appeared in the textbooks of S. Lacroix'®. A vig-
orous advocate of this concept of a function was N.I. Lobachevskiil®, who
noted that “a comprehensive view of theory admits only dependence rela-
tionships in which the numbers connected with each other are understood as
if they were given as a single unit.”6 It is this idea of precise definition of
the concept of a function that we are about to explain.

The description of the concept of a function given at the beginning of
this section is quite dynamic and reflects the essence of the matter. However,
by modern canons of rigor it cannot be called a definition, since it uses the
concept of a correspondence, which is equivalent to the concept of a func-
tion. For the reader’s information we shall show here how the definition of a
function can be given in the language of set theory. (It is interesting that the
concept of a relation, to which we are now turning, preceded the concept of
a function, even for Leibniz.)

a. Relations

Definition 1. A relation R is any set of ordered pairs (z,y).

13 Johann Bernoulli (1667-1748) — one of the early representatives of the distin-
guished Bernoulli family of Swiss scholars; he studied analysis, geometry and
mechanics. He was one of the founders of the calculus of variations. He gave the
first systematic exposition of the differential and integral calculus.

14 5. F. Lacroix (1765-1843) — French mathematician and educator (professor at the
Ecole Normale and the Ecole Polytechnique, and member of the Paris Academy
of Sciences).

15 N.I. Lobachevskii (1792-1856) — great Russian scholar, to whom belongs the
credit — shared with the great German scientist C.F.Gauss (1777-1855) and
the outstanding Hungarian mathematician J.Bdlyai (1802-1860) — for having
discovered the non-Euclidean geometry that bears his name.

16 T obachevskii, N.I. Complete Works, Vol. 5, Moscow-Leningrad: Gostekhizdat,
1951, p. 44 (Russian).
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The set X of first elements of the ordered pairs that constitute R is called
the domain of definition of R, and the set Y of second elements of these pairs
the range of values of R.

Thus, a relation can be interpreted as a subset R of the direct product
XxY. IfXCX andY CcY/, thenof course RC X xY C X' xY’, so
that a given relation can be defined as a subset of different sets.

Any set containing the domain of definition of a relation is called a domain
of departure for that relation. A set containing the region of values is called
a domain of arrival of the relation.

Instead of writing (z,y) € R, we often write zRy and say that x is
connected with y by the relation R.

If R C X2, we say that the relation R is defined on X.

Let us consider some examples.

Example 13. The diagonal
A={(a,b) € X?*|a=0b}

is a subset of X? defining the relation of equality between elements of X.
Indeed, aAb means that (a,b) € A, that is, a = b.

Ezample 14. Let X be the set of lines in a plane.

Two lines @ € X and b € X will be considered to be in the relation R,
and we shall write aRb, if b is parallel to a. It is clear that this condition
distinguishes a set R of pairs (a,b) in X2 such that aRb. It is known from
geometry that the relation of parallelism between lines has the following
properties:

aRa (reflexivity);

aRb = bRa (symmetry);

(aRb) A (bRc) = aRc (transitivity).

A relation R having the three properties just listed, that is, reflexivity,'”
symmetry, and transitivity, is usually called an equivalence relation. An equiv-
alence relation is denoted by the special symbol ~, which in this case replaces
the letter R. Thus, in the case of an equivalence relation we shall write a ~ b
instead of aRb and say that a is equivalent to b.

Ezample 15. Let M be a set and X = P(M) the set of its subsets. For two
arbitrary elements a and b of X = P(M), that is, for two subsets a and b of
M, one of the following three possibilities always holds: a is contained in b; b
is contained in a; a is not a subset of b and b is not a subset of a.

17 For the sake of completeness it is useful to note that a relation R is reflezive
if its domain of definition and its range of values are the same and the relation
aRa holds for any element a in the domain of R.
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As an example of a relation R on X2, consider the relation of inclusion
for subsets of M, that is, make the definition

aRb:=(aCb).

This relation obviously has the following properties:
aRa (reflexivity);
(aRb) A (bRc) = aRc (transitivity);
(aRb) A (bRa) = aAb, that is, a = b (antisymmetry).

A relation between pairs of elements of a set X having these three prop-
erties is usually called a partial ordering on X. For a partial ordering relation
on X, we often write a < b and say that b follows a.

If the condition

VaVb((aRb) V (bRa))

holds in addition to the last two properties defining a partial ordering relation,
that is, any two elements of X are comparable, the relation R is called an
ordering, and the set X with the ordering defined on it is said to be linearly
ordered.

The origin of this term comes from the intuitive image of the real line R
on which a relation a < b holds between any pair of real numbers.

b. Functions and their graphs. A relation R is said to be functional if
(zRy1) A (zRy2) = (y1 = ¥2) -

A functional relation is called a function.

In particular, if X and Y are two sets, not necessarily distinct, a relation
R C X xY between elements x of X and y of Y is a functional relation on X
if for every x € X there exists a unique element y € Y in the given relation
to z, that is, such that 2Ry holds.

Such a functional relation R C X x Y is a mapping from X into Y, or a
~ function from X into Y.
We shall usually denote functions by the letter f. If f is a function, we

shall write y = f(z) or z NEIN y, as before, rather than z f y, calling y = f(x)
the value of f at z or the image of x under f.

As we now see, assigning an element y € Y “corresponding” to z € X in
accordance with the “rule” f, as was discussed in the original description of
the concept of a function, amounts to exhibiting for each x € X the unique
y € Y such that z fy, that is, (z,y) € f C X x Y.

The graph of a function f : X — Y, as understood in the original de-
scription, is the subset I' of the direct product X x Y whose elements have
the form (z, f(z)). Thus

I'={(z,y) e X xY|y=f(z)} .
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In the new description of the concept of a function, in which we define it
as a subset f C X x Y, of course, there is no longer any difference between
a function and its graph.

We have exhibited the theoretical possibility of giving a formal set-
theoretic definition of a function, which reduces essentially to identifying a
function and its graph. However, we do not intend to confine ourselves to that
way of defining a function. At times it is convenient to define a functional
relation analytically, at other times by giving a table of values, and at still
other times by giving a verbal description of a process (algorithm) making
it possible to find the element y € Y corresponding to a given z € X. With
each method of presenting a function it is meaningful to ask how the function
could have been defined using its graph. This problem can be stated as the
problem of constructing the graph of the function. Defining numerical-valued
functions by a good graphical representation is often useful because it makes
the basic qualitative properties of the functional relation visualizable. One
can also use graphs (nomograms) for computations; but, as a rule, only in
cases where high precision is not required. For precise computations we do
use the table definition of a function, but more often we use an algorithmic
definition that can be implemented on a computer.

1.3.5 Exercises

1. The composition Rz o R1 of the relations R1 and R is defined as follows:
RooR1:= {(a:, 2)| Jy (zR1y A szz)} .

In particular, if R1 C X XY and R, CY X Z,then R=Ra0R1 C X X Z, and
TRz =Ty ((y €EY)A (zR1y) A (ngz)) .

a) Let Ax be the diagonal of X? and Ay the diagonal of Y2, Show that if the
relations R1 C X XY and R2 C Y x X are such that (Re2o0R1 = Ax)A(R10Rz =
Ay), then both relations are functional and define mutually inverse mappings of X
and Y.

b) Let R C X?2. Show that the condition of transitivity of the relation R is
equivalent to the condition Ro R C R.

c) The relation R’ C Y x X is called the transpose of the relation R C X x Y
if (yR'z) & (zRy).

Show that a relation R C X? is antisymmetric if and only if RNR’ C Ax.

d) Verify that any two elements of X are connected (in some order) by the
relation R C X? if and only if RUR' = X2.

2. Let f: X — Y be a mapping. The pre-image f~'(y) C X of the element y € Y’
is called the fiber over y.

a) Find the fibers for the following mappings:
pI‘I:X1><X2—)X1, pI‘2:X1XX2——)X2.
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b) An element z; € X will be considered to be connected with an element
z2 € X by the relation R C X2, and we shall write z1Rz2 if f(z1) = f(z2), that
is, 1 and z2 both lie in the same fiber.

Verify that R is an equivalence relation.

c) Show that the fibers of a mapping f : X — Y do not intersect one another
and that the union of all the fibers is the whole set X.

d) Verify that any equivalence relation between elements of a set makes it
possible to represent the set as a union of mutually disjoint equivalence classes of
elements.

3. Let f: X — Y be a mapping from X into Y. Show that if A and B are subsets
of X, then

a) (AC B) = (f(4) C £(B)) # (AC B).

b) (4#2) = (£(4) #2),
) f(ANB) C f(A)N f(B),
d) f(AUB) = f(A)U f(B);
if A’ and B’ are subsets of Y, then
&) (4 c B) = (f1) C £7U(B)),
f) f7Y(A'NB) =1 (A)n fTY(B),
g) [THA'UB) =1 (AU (B
ifY D A’ > B, then
h) f7HAN\ B)) = fTHA)\ fTY(B),
i) fH(CrA) =Cx fTH(A);
and forany AC X and B’ CY
D17 (F) o 4,
K £(f(8)) C B
4. Show that the mapping f: X = Y is
a) surjective if and only if f(f_l(B')) = B’ for every set B’ C Y;
b) bijective if and only if
(7 (7)) = ) n (1(£78)) = B)
for every set A C X and every set B’ C Y.
5. Verify that the following statements about a mapping f : X — Y are equivalent:
a) f is injective;
b) f_l(f(A)) = A for every A C X;;
¢) f(AN B) = f(A) N f(B) for any two subsets A and B of X

d) f(A)Nf(B)=8 < ANB=g;
e) f(A\ B) = f(A)\ f(B) whenever X D AD B.
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6. a) If the mappings f: X =+ Y and g: Y — X are such that go f = ex, where
ex is the identity mapping on X, then g is called a left inverse of f and f a right
inverse of g. Show that, in contrast to the uniqueness of the inverse mapping, there
may exist many one-sided inverse mappings.

Consider, for example, the mappings f: X - Y and g: Y — X, where X is a
one-element set and Y a two-element set, or the mappings of sequences given by

(z1,. -y Zn,y-..) ELN (@, Z1y. ey Tny--2),

(y27'”ayn>"') (i" (ylay2,-”’yna"')'

b)Let f: X —» Y and g : Y — Z be bijective mappings. Show that the mapping
go f:X — Z is bijective and that (go f)™' = f~log~ %
¢) Show that the equality

(goNC) =F7(s7(O)

holds for any mappings f: X - Y and g: Y — Z and any set C C Z.

d) Verify that the mapping F : X XY — Y X X defined by the correspondence
(z,y) — (y,x) is bijective. Describe the connection between the graphs of mutually
inverse mappings f: X - Y and f7!:Y — X.

7. a) Show that for any mapping f : X — Y the mapping F': X — X x Y defined

by the correspondence x N (az, f (:c)) is injective.

b) Suppose a particle is moving at uniform speed on a circle Y; let X be the

time axis and z — y the correspondence between the time z € X and the position
y = f(z) € Y of the particle. Describe the graph of the function f : X — Y in
X xY.

8. a) For each of the examples 1-12 considered in Sect. 1.3 determine whether the
mapping defined in the example is surjective, injective, or bijective or whether it
belongs to none of these classes.

b) Ohm’s law I = V/R connects the current I in a conductor with the potential
difference V' at the ends of the conductor and the resistance R of the conductor.
Give sets X and Y for which some mapping O : X — Y corresponds to Ohm’s law.
What set is the relation corresponding to Ohm’s law a subset of?

c) Find the mappings G~! and L~! inverse to the Galilean and Lorentz trans-
formations.

9. a) A set S C X is stable with respect to a mapping f : X — X if f(S) C S.
Describe the sets that are stable with respect to a shift of the plane by a given
vector lying in the plane.

b) A set I C X is invariant with respect to a mapping f: X — X if f(I) = I.
Describe the sets that are invariant with respect to rotation of the plane about a
fixed point.

¢) A point p € X is a fized point of a mapping f : X — X if f(p) = p. Verify
that any composition of a shift, a rotation, and a similarity transformation of the
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plane has a fixed point, provided the coefficient of the similarity transformation is
less than 1.

d) Regarding the Galilean and Lorentz transformations as mappings of the
plane into itself for which the point with coordinates (z,t) maps to the point with
coordinates (z’,t'), find the invariant sets of these transformations.

10. Consider the steady flow of a fluid (that is, the velocity at each point of the
flow does not change over time). In time ¢ a particle at point z of the flow will move
to some new point fi(z) of space. The mapping = — fi(z) that arises thereby on
the points of space occupied by the flow depends on time and is called the mapping
after time t. Show that fi, o fi; = fi, © fi, = ft;+t, and fro f_; = ex.

1.4 Supplementary Material

1.4.1 The Cardinality of a Set (Cardinal Numbers)

The set X is said to be equipollent to the set Y if there exists a bijective
mapping of X onto Y, that is, a point y € Y is assigned to each z € X,
the elements of Y assigned to different elements of X are different, and every
point of Y is assigned to some point of X.

Speaking fancifully, each element x € X has a seat all to itself in Y, and
there are no vacant seats y € Y.

It is clear that the relation XRY thereby introduced is an equivalence
relation. For that reason we shall write X ~ Y instead of XRY', in accordance
with our earlier convention.

The relation of equipollence partitions the collection of all sets into classes
of mutually equivalent sets. The sets of an equivalence class have the same
number of elements (they are equipollent), and sets from different equivalence
classes do not.

The class to which a set X belongs is called the cardinality of X, and also
the cardinal or cardinal number of X. It is denoted card X. If X ~ Y, we
© write card X = card Y.

The idea behind this construction is that it makes possible a comparison of
the numbers of elements in sets without resorting to an intermediate count,
that is, without measuring the number by comparing it with the natural
numbers N = {1,2,3,...}. Doing the latter, as we shall soon see, is sometimes
not even theoretically possible.

The cardinal number of a set X is said to be not larger than the cardinal
number of a set Y, and we write card X < cardY’, if X is equipollent to some
subset of Y.

Thus,

(card X < cardY):=3Z C Y (card X = card Z) .



26 1 Some General Mathematical Concepts and Notation

If X CY, it is clear that card X < cardY. It turns out, however, that
the relation X C Y does not exclude the inequality cardY < card X, even
when X is a proper subset of Y.

For example, the correspondence x — I_le' is a bijective mapping of the
interval —1 < z < 1 of the real axis R onto the entire axis.

The possibility of being equipollent to a proper subset of itself is a charac-
teristic of infinite sets that Dedekind'® even suggested taking as the definition
of an infinite set. Thus a set is called finite (in the sense of Dedekind) if it is
not equipollent to any proper subset of itself; otherwise, it is called infinite.

Just as the relation of inequality orders the real numbers on a line, the
inequality just introduced orders the cardinal numbers of sets. To be specific,
one can prove that the relation just constructed has the following properties:

1° (card X < cardY) A (cardY < card Z) = (card X < card Z) (obvious).

20 (card X < cardY) A (cardY < cardX) = (card X = cardY) (the
Schréder-Bernstein theorem.!9).

30 VX VY (card X < cardY) V (card Y < card X) (Cantor’s theorem).

Thus the class of cardinal numbers is linearly ordered.

We say that the cardinality of X is less than the cardinality of Y and write
card X < cardY, if card X < cardY but card X # cardY. Thus (card X <
cardY) := (card X < cardY) A (card X # cardY’).

As before, let @ be the empty set and P(X) the set of all subsets of the
set X. Cantor made the following discovery:

Theorem. card X < card P(X).

Proof. The assertion is obvious for the empty set, so that from now on we
shall assume X # @.

Since P(X) contains all one-element subsets of X, card X < card P(X).

To prove the theorem it now suffices to show that card X # card P(X) if
X # 2.

Suppose, contrary to the assertion, that there exists a bijective mapping
f:X — P(X). Consider the set A= {z € X : z ¢ f(z)} consisting of the
elements z € X that do not belong to the set f(z) € P(X) assigned to them
by the bijection. Since A € P(X), there exists a € X such that f(a) = A.
For the element a the relation a € A is impossible by the definition of A, and
the relation a ¢ A is impossible, also by the definition of A. We have thus
reached a contradiction with the law of excluded middle. O

18 R. Dedekind (1831-1916) — German algebraist who took an active part in the
development of the theory of a real number. He was the first to propose the
axiomatization of the set of natural numbers usually called the Peano axiom
system after G.Peano (1858-1932), the Italian mathematician who formulated
it somewhat later.

19 7. Bernstein (1878-1956) — German mathematician, a student of G.Cantor.
E. Schroder (1841-1902) — German mathematician.
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This theorem shows in particular that if infinite sets exist, then even
“infinities” are not all the same.

1.4.2 Axioms for Set Theory

The purpose of the present subsection is to give the interested reader a picture of
an axiom system that describes the properties of the mathematical object called a
set and to illustrate the simplest consequences of those axioms.

1°. (Axiom of extensionality) Sets A and B are equal if and only if they
have the same elements.

This means that we ignore all properties of the object known as a “set” except
the property of having elements. In practice it means that if we wish to establish

that A = B, we must verify that Vz ((x ceA)e (ze B)).

2, (Axiom of separation) To any set A and any property P there corresponds
a set B whose elements are those elements of A, and only those, having property
P.

More briefly, it is asserted that if A is a set, then B = {z € A| P(z)} is also a
set.

This axiom is used very frequently in mathematical constructions, when we
select from a set the subset consisting of the elements having some property.

For example, it follows from the axiom of separation that there exists an empty
subset @x = {zr € X|z # z} in any set X. By virtue of the axiom of extensionality
we conclude that @x = @y for all sets X and Y, that is, the empty set is unique.
We denote this set by @.

It also follows from the axiom of separation that if A and B are sets, then
A\ B ={z € A|z ¢ B} is also a set. In particular, if M is a set and A a subset of
M, then Cp A is also a set.

3°. (Union axiom) For any set M whose elements are sets there ezists a set
UM, called the union of M and consisting of those elements and only those that
belong to some element of M.

If we use the phrase “family of sets” instead of “a set whose elements are sets”,
" the axiom of union assumes a more familiar sound: there exists a set consisting of
the elements of the sets in the family. Thus, a union of setsisa set,andz € JM &

ax((x EM)A(z e X)).
When we take account of the axiom of separation, the union axiom makes it
possible to define the intersection of the set M (or family of sets) as the set

MM := {erMWX ((Xe M) = (a;eX))}.

4°. (Pairing axiom) For any sets X and Y there exists a set Z such that X and
Y are its only elements.

The set Z is denoted {X,Y} and is called the unordered pair of sets X and Y.
The set Z consists of one element if X =Y.
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As we have already pointed out, the ordered pair (X,Y) differs from the un-
ordered pair by the presence of some property possessed by one of the sets in the
pair. For example, (X,Y) := {{X,X},{X,Y}}.

Thus, the unordered pair makes it possible to introduce the ordered pair, and
the ordered pair makes it possible to introduce the direct product of sets by using
the axiom of separation and the following important axiom.

5%. (Power set axiom) For any set X there exists a set P(X) having each
subset of X as an element, and having no other elements.

In short, there exists a set consisting of all the subsets of a given set.

We can now verify that the ordered pairs (z,y), where z € X and y € Y, really
do form a set, namely

X XY= {pEP(P(X)UP(Y))| (= (z,y)) AMzeX)A(ye Y)} .

Axioms 1°-5° limit the possibility of forming new sets. Thus, by Cantor’s the-
orem (which asserts that card X < card P(X)) there is an element in the set P(X)
that does not belong to X. Therefore the “set of all sets” does not exist. And it
was precisely on this “set” that Russell’s paradox was based.

In order to state the next axiom we introduce the concept of the successor X+
of the set X. By definition Xt = X U {X}. More briefly, the one-element set {X}
is adjoined to X.

Further, a set is called inductive if the empty set is one of its elements and the
successor of each of its elements also belongs to it.

6°. (Axiom of infinity) There exist inductive sets.

When we take Axioms 1°-4° into account, the axiom of infinity makes it possible
to construct a standard model of the set Ny of natural numbers (in the sense of
von Neumann),?® by defining Ny as the intersection of all inductive sets, that is,
the smallest inductive set. The elements of Ny are

o, o*=oU{e}={(e}, {2} ={e}U{{e}},...,

which are a model for what we denote by the symbols 0, 1,2, ... and call the natural
numbers.

7°. (Axiom of replacement) Let F(z,y) be a statement (more precisely, a
formula) such that for every zo in the set X there erists a unique object yo such
that F(xo,yo) is true. Then the objects y for which there exists an element z € X
such that F(z,y) is true form a set.

We shall make no use of this axiom in our construction of analysis.

Axioms 1°-7° constitute the axiom system known as the Zermelo—Fraenkel ax-
jioms.?!

To this system another axiom is usually added, one that is independent of
Axioms 1°-7° and used very frequently in analysis.

20 J.von Neumann (1903-1957) — American mathematician who worked in func-
tional analysis, the mathematical foundations of quantum mechanics, topological
groups, game theory, and mathematical logic. He was one of the leaders in the
creation of the first computers.

21 E.Zermelo (1871-1953) — German mathematician. A. Fraenkel (1891-1965) —
German (later, Israeli) mathematician.
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8°, (Axiom of choice) For any family of nonempty sets there exists a set C
such that for each set X in the family X N C consists of exactly one element.

In other words, from each set of the family one can choose exactly one repre-
sentative in such a way that the representatives chosen form a set C.

The axiom of choice, known as Zermelo’s axiom in mathematics, has been the
subject of heated debates among specialists.

1.4.3 Remarks on the Structure of Mathematical Propositions
and Their Expression in the Language of Set Theory

In the language of set theory there are two basic, or atomic types of mathe-
matical statements: the assertion z € A, that an object z is an element of a
set A, and the assertion A = B, that the sets A and B are identical. (However,
when the axiom of extensionality is taken into account, the second statement
is a combination of statements of the first type: (z € A) < (z € B).)

A complex statement or logical formula can be constructed from atomic
statements by means of logical operators — the connectors -, A, V = and the
quantifiers V, 3 — by use of parentheses ( ). When this is done, the formation
of any statement, no matter how complicated, reduces to carrying out the
following elementary logical operations:

a) forming a new statement by placing the negation sign before some
statement and enclosing the result in parentheses;

b) forming a new statement by substituting the necessary connectors A,
V, and = between two statements and enclosing the result in parentheses.

¢) forming the statement “for every object x property P holds,” (written
as Vz P(z)) or the statement “there exists an object z having property P”
(written as 3z P(z)).

For example, the cumbersome expression

3z (P(z) A (Vy (P(y) = (y = ))))

means that there exists an obj.ect having property P and such that if y is
" any object having this property, then y = x. In brief: there exists a unique
object z having property P. This statement is usually written 3!z P(x), and
we shall use this abbreviation.

To simplify the writing of a statement, as already pointed out, one at-
tempts to omit as many parentheses as possible while retaining the unambigu-
ous interpretation of the statement. To this end, in addition to the priority
of the operators —, A, V, = mentioned earlier, we assume that the symbols in
a formula are most strongly connected by the symbols €, =, then 4, V, and
then the connectors —, A, V, =.

Taking account of this convention, we can now write

Az P(z) := Jz(P(z) AVy (P(y) = y=1z)) .
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We also make the following widely used abbreviations:

(Vz € X)P :=Vz (z € X = P(z)),
(3z € X)P := 3z (z€ X AP(z)),
(Vz >a)P :=Vz(zr € RAz>a= P(z)),
(3z >a)P:=3z(z€eRAz>aAP(z)).

Here R, as always, denotes the set of real numbers.

Taking account of these abbreviations and the rules a), b), c) for con-
structing complex statements, we can, for example, give an unambiguous
expression

(lmf(x)=a) =Ve>036>0Vz e R(0< |z —a| <& =|f(z) — Al <¢)

of the fact that the number A is the limit of the function f : R — R at the
point a € R.

For us perhaps the most important result of what has been said in this
subsection will be the rules for forming the negation of a statement containing
quantifiers.

The negation of the statement “for some z, P(z) is true” means that “for
any z, P(z) is false”, while the negation of the statement “for any z, P(z) is
true” means that “there exists an z such that P(z) is false”.

Thus,

-3z P(z) < Vz-P(z),
-Vz P(z) < Jz-P(z) .

We recall also (see the exercises in Sect. 1.1) that

~(PAQ) & -PV-Q,
~(PVQ) & -PA-Q,
“(P=Q) & PA-Q.
On the basis of what has just been said, one can conclude, for example,

that
-((Vz > a) P) & (3z > a) -P.

It would of course be wrong to express the right-hand side of this last relation
as (Jz < a) -P.
Indeed,
-((Vz > a) P) := ~(Vz (z e RAz > a = P(z))) &
& Jz-(z€eRAz>a= Pz)) &
& 3z ((z€RAz >a)A-P(z)) = (3z >a)-P.
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If we take into acount the structure of an arbitrary statement mentioned
above, we can now use the negations just constructed for the simplest state-
ments to form the negation of any particular statement.

For example,

ﬂ(ii_g}lf(x)=A)®Els>0V5>OElxeR
(0<|z—a|l<S6A|f(z)— Al >¢).

The practical importance of the rule for forming a negation is connected,
in particular, with the method of proof by contradiction, in which the truth
of a statement P is deduced from the fact that the statement —P is false.

1.4.4 Exercises

1. a) Prove the equipollence of the closed interval {z € R|0 < z < 1} and the open
interval {x € R|0 < z < 1} of the real line R both using the Schroder-Bernstein
theorem and by direct exhibition of a suitable bijection. .

b) Analyze the following proof of the Schroder-Bernstein theorem:
(card X < cardY) A (cardY < card X) = (card X = cardY) .

Proof. It suffices to prove that if the sets X, Y, and Z are such that X DY D Z
and card X = card Z, then card X = cardY. Let f : X — Z be a bijection. A
bijection g : X — Y can be defined, for example, as follows:

| flz), ifze fMX)\fH(Y) for somen eN,
9(z) = { z otherwise.

Here f* = fo---o f is the nth iteration of the mapping f and N is the set of
natural numbers. O

2. a) Starting from the definition of a pair, verify that the definition of the direct
product X XY of sets X and Y given in Subsect. 1.4.2 is unambiguous, that is, the

set 'P(P(X) U 'P(Y)) contains all ordered pairs (z,y) in whichz € X and y € Y.
b) Show that the mappings f : X — Y from one given set X into another given
set Y themselves form a set M(X,Y).

c¢) Verify that if R is a set of ordered pairs (that is, a relation), then the first
elements of the pairs belonging to R (like the second elements) form a set.

3. a) Using the axioms of extensionality, pairing, separation, union, and infinity,
verify that the following statements hold for the elements of the set No of natural
numbers in the sense of von Neumann:

1°z=y=>zt =y
2° (Vz € No) (z+ # @);
Pt =yt ==y
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4° (Vo € No) (2 # 2 = (3y € No) (2 = y¥)).

b) Using the fact that Np is an inductive set, show that the following statements
hold for any of its elements z and y (which in turn are themselves sets):

1° cardz < cardz™;

2° card @ < cardz™;

3% cardz < cardy < cardzt < cardy™;

4° cardz < cardz™;

50 cardz < cardy = cardzt < cardy;

6% z =y < cardz = cardy;

" (CcyVzdy).

c) Show that in any subset X of Np there exists a (minimal) element z, such

that (Vz € X) (card z,, < cardz). (If you have difficulty doing so, come back to
this problem after reading Chapter 2.)

4. We shall deal only with sets. Since a set consisting of different elements may

itself be an element of another set, logicians usually denote all sets by uppercase
letters. In the present exercise, it is very convenient to do so.

a) Verify that the statement
VzIyvz (z cye Jw(zewAwe :c))

expresses the axiom of union, according to which y is the union of the sets belonging
to z.

b) State which axioms of set theory are represented by the following statements:

VzVyVz ((ze:z«:)ze:l/)@:c:y),

Vz Vy 3z Vo (vez¢(v=wvv=y)) )

Vz Iy Vz (zey%Vu(uez:uex)),

Elx(Vy(—Elz(zEy)éyex)/\Vw(wEx=>
=>‘v’u(\7’v(v€u®(v=wVv€w))=>u€x))).
c¢) Verify that the formula
Vz(z€ f = (Elxl Jp(zr€zAyp EYynz= (zl,yl)))) A
AVz, (zl €= Iy Iz (y1 ey/\z=(x1,y1)/\z€f)) A
AVz1Vy1 Yy (Hzl Jzo(z1 € fAZ2 € fAZ1 = (21,71) A

Nz = (:Ez,yz)) =1y = yz)
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imposes three successive restrictions on the set f: f is a subset of z xy; the projection
of f on z is equal to z; to each element = of x there corresponds exactly one y; in
y such that (z1,y1) € f.

Thus what we have here is a definition of a mapping f : z — y.

This example shows yet again that the formal expression of a statement is by no
means always the shortest and most transparent in comparison with its expression
in ordinary language. Taking this circumstance into account, we shall henceforth
use logical symbolism only to the extent that it seems useful to us to achieve greater
compactness or clarity of exposition.

5. Let f: X — Y be a mapping. Write the logical negation of each of the following
statements:

a) f is surjective;
b) f is injective;
c¢) f is bijective.

6. Let X and Y be sets and f C X x Y. Write what it means to say that the set
f is not a function.






2 The Real Numbers

Mathematical theories, as a rule, find uses because they make it possible to
transform one set of numbers (the initial data) into another set of numbers
constituting the intermediate or final purpose of the computations. For that
reason numerical-valued functions occupy a special place in mathematics and
its applications. These functions (more precisely, the so-called differentiable
functions) constitute the main object of study of classical analysis. But, as
you may already have sensed from your school experience, and as will soon be
confirmed, any description of the properties of these functions that is at all
complete from the point of view of modern mathematics is impossible with-
out a precise definition of the set of real numbers, on which these functions
operate.

Numbers in mathematics are like time in physics: everyone knows what
they are, and only experts find them hard to understand. This is one of the
basic mathematical abstractions, which seems destined to undergo significant
further development. A very full separate course could be devoted to this sub-
ject. At present we intend only to unify what is basically already known to
the reader about real numbers from high school, exhibiting as axioms the
fundamental and independent properties of numbers. In doing this, our pur-
pose is to give a precise definition of real numbers suitable for subsequent
mathematical use, paying particular attention to their property of complete-
ness or continuity, which contains the germ of the idea of passage to the limit
. — the basic nonarithmetical operation of analysis.

2.1 The Axiom System and some General Properties
of the Set of Real Numbers

2.1.1 Definition of the Set of Real Numbers

Definition 1. A set R is called the set of real numbers and its elements are
real numbers if the following list of conditions holds, called the axiom system
of the real numbers.
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(I) AXIOMS FOR ADDITION

An operation
+:RxR—>R,

(the operation of addition) is defined, assigning to each ordered pair (z,y) of
elements z,y of R a certain element x + y € R, called the sum of x and y.
This operation satisfies the following conditions:

14. There exists a neutral, or identity element O (called zero) such that
z+0=04+z=2

for every x € R.
24. For every element x € R there exists an element —z € R called the
negative of x such that

z+(—z)=(—z)+2=0.

34+. The operation + is associative, that is, the relation
z+y+z)=(z+y)+2

holds for any elements x,y,z of R.

4,. The operation + is commutative, that is,
rt+y=y+x

for any elements x,y of R.

If an operation is defined on a set G satisfying axioms 1, 24, and 3,
we say that a group structure is defined on G or that G is a group. If the
operation is called addition, the group is called an additive group. If it is also
known that the operation is commutative, that is, condition 4, holds, the
group is called commutative or Abelian.!

Thus, Axioms 1,—-4, assert that R is an additive abelian group.

(IT) AXIOMS FOR MULTIPLICATION

An operation
o :RxR—-R,

(the operation of multiplication) is defined, assigning to each ordered pair
(z,y) of elements z,y of R a certain element = -y € R, called the product of
z and y. This operation satisfies the following conditions:

! N.H.Abel (1802-1829) - outstanding Norwegian mathematician, who proved
that the general algebraic equation of degree higher than four cannot be solved
by radicals.
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1,. There exists a neutral, or identity element 1 € R\ 0 (called one) such
that

for every x € R.

2,. For every element x € R\ O there exists an element z~! € R, called
the inverse or reciprocal of z, such that

3.. The operation e is associative, that is, the relation
z-(y-2)=(z-y) 2z

holds for any elements x,y,z of R.

44. The operation e is commutative, that is,
T Y=y-x
for any elements x,y of R.
We remark that with respect to the operation of multiplication the set
R\ 0, as one can verify, is a (multiplicative) group.
(I, II) THE CONNECTION BETWEEN ADDITION AND MULTIPLICATION

Multiplication is distributive with respect to addition, that is
(z+y)z=zz+yz

for all z,y,z € R.
We remark that by the commutativity of multiplication, this equality
continues to hold if the order of the factors is reversed on either side.
If two operations satisfying these axioms are defined on a set G, then G
is called a field.
(III) ORDER AXIOMS

Between elements of R there is a relation <, that is, for elements z,y € R
one can determine whether x <y or not. Here the following conditions must
hold:

O0<.Vz e R(z < z).

l<. @<y A(y<z)=> (z=9).

2<. (z<y) ANy <2)= (z < 2).
VzeRWEeR(z<y)V (y <2).

IN A

w
IA
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The relation < on R is called inequality.

A set on which there is a relation between pairs of elements satisfying
axioms O<, 1<, and 2<, as you know, is said to be partially ordered. If in
addition axiom 3< holds, that is, any two elements are comparable, the set
is linearly ordered. Thus the set of real numbers is linearly ordered by the
relation of inequality between elements.

(I, IIT) THE CONNECTION BETWEEN ADDITION AND ORDER ON R

If x,y,z are elements of R, then

z<y)=(z+2z<y+2).

(II, III) THE CONNECTION BETWEEN MULTIPLICATION AND ORDER ON R

If x and y are elements of R, then

O<2)AN(0<yYy)=0<z-y).

(IV) THE AXIOM OF COMPLETENESS (CONTINUITY)

If X and Y are nonempty subsets of R having the property that x <y for
every x € X and every y € Y, then there exists c € R such that x < c <y
forallzre X andy €Y.

We now have a complete list of axioms such that any set on which these
axioms hold can be considered a concrete realization or model of the real
numbers.

This definition does not formally require any preliminary knowledge about
numbers, and from it “by turning on mathematical thought” we should, again
formally, obtain as theorems all the other properties of real numbers. On the
subject of this axiomatic formalism we would like to make a few informal
remarks.

Imagine that you had not passed from the stage of adding apples, cubes,
or other named quantities to the addition of abstract natural numbers; you
had not studied the measurement of line segments and arrived at rational
numbers; you did not know the great discovery of the ancients that the diag-
onal of a square is incommensurable with its side, so that its length cannot
be a rational number, that is, that irrational numbers are needed; you did not
have the concept of “greater” or “smaller” that arises in the process of mea-
surement; you did not picture order to yourself using, for example, the real
line. If all these preliminaries had not occurred, the axioms just listed would
not be perceived as the outcome of intellectual progress; they would seem at
the very least a strange, and in any case arbitrary, fruit of the imagination.

In relation to any abstract system of axioms, at least two questions arise
immediately.
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First, are these axioms consistent? That is, does there exist a set satisfying
all the conditions just listed? This is the problem of consistency of the axioms.

Second, does the given system of axioms determine the mathematical
object uniquely? That is, as the logicians would say, is the axiom system
categorical? Here uniqueness must be understood as follows. If two people
A and B construct models independently, say of number systems R4 and
Rp, satisfying the axioms, then a bijective correspondence can be established
between the systems R4 and Rp, say f : R4 — Rp, preserving the arithmetic
operations and the order, that is,

flz+y) = fl@)+ fv),
fl-y) = f(x)- fly),
r<y & flz) < fly)-

In this case, from the mathematical point of view, R4 and Rp are merely
distinct but equally valid realizations (models) of the real numbers (for ex-
ample, R4 might be the set of infinite decimal fractions and Rp the set of
points on the real line). Such realizations are said to be isomorphic and the
mapping f is called an isomorphism. The result of this mathematical activ-
ity is thus not about any particular realization, but about each model in the
class of isomorphic models of the given axiom system.

We shall not discuss the questions posed above, but instead confine our-
selves to giving informative answers to them.

A positive answer to the question of consistency of an axiom system is
always of a hypothetical nature. In relation to numbers it has the following
appearance: Starting from the axioms of set theory that we have accepted
(see Subsect. 1.4.2), one can construct the set of natural numbers, then the
set of rational numbers, and finally the set R of real numbers satisfying all
the properties listed.

The question of the categoricity of the axiom system for the real numbers
can be established. Those who wish to do so may obtain it independently by

- solving Exercises 23 and 24 at the end of this section.

2.1.2 Some General Algebraic Properties of Real Numbers

We shall show by examples how the known properties of numbers can be
obtained from these axioms.

a. Consequences of the Addition Axioms 1°. There is only one zero in
the set of real numbers.

Proof. If 0; and Oy are both zeros in R, then by definition of zero,

0;=0;4+02=024+0,=0,. O
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20, Each element of the set of real numbers has a unique negative.

Proof. If £; and z2 are both negatives of z € R, then
b.’ltl =z1+0=z1+(z4+z2)=(x1+z)+22=04+22=22. O

Here we have used successively the definition of zero, the definition of the
negative, the associativity of addition, again the definition of the negative,
and finally, again the definition of zero.

30. In the set of real numbers R the equation
a+zxz=>

has the unique solution

z=b+ (—a).
Proof. This follows from the existence and uniqueness of the negative of every
element a € R:

(a+z=0b)< ((x+a)+ (—a)=b+(—a) &
& (z+(a+(-a)) =b+(—a)) © (z+0=b+(—a)) &
& (z=b+(-a)).0O

The expression b+ (—a) can also be written as b — a. This is the shorter
and more common way of writing it, to which we shall adhere.

b. Consequences of the Multiplication Axioms 1°. There is only one
multiplicative unit in the real numbers.

20, For each = # 0 there is only one reciprocal z 1.
30. For a € R\ 0, the equation a - = b has the unique solution z =b-a~".

The proofs of these propositions, of course, merely repeat the proofs of the
corresponding propositions for addition (except for a change in the symbol
and the name of the operation); they are therefore omitted.

c. Consequences of the Axiom Connecting Addition and Multi-
plication Applying the additional axiom (I, IT) connecting addition and
multiplication, we obtain further consequences.

1. For any z € R
z:0=0-z=0.

Proof.

(z-0=z-(0+0)=2-0+2-0)=>(z-0=2-04+(—(z-0))=0). O
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From this result, incidentally, one can see that if z € R\0, then z=! € R\0.
20, (z-y=0)=(z=0)V(y=0).

Proof. If, for example, y # 0, then by the uniqueness of the solution of the
equation z-y =0forz, wefindz=0-y~ 1 =0. O

30, For any x € R
—z=(-1)-z.

Proof. +(-1)-z=(1+(-1))-2=0-z =20 =0, and the assertion now
follows from the uniqueness of the negative of a number. 0O

4°, For anyz € R

(-D(-=z)==.
Proof. This follows from 3° and the uniqueness of the negative of —z. O

50. For any x € R
(—z) (-z)==z-z.

Proof.
(—2)(=2) = ((=1) - 2)(=2) = (2 - (~1))(~2) = 2((-1)(=2)) = -2 .

Here we have made successive use of the preceding propositions and the
commutativity and associativity of multiplication. O

d. Consequences of the Order Axioms We begin by noting that the
relation z < y (read “z is less than or equal to y”) can also be written as
y > = (“y is greater than or equal to z”); when z # y, the relation z < y is
written z < y (read “z is less than y”) or y > z (read “y is greater than z”),
and is called strict inequality.

19, For any x and y in R precisely one of the following relations holds:
x <y, =y, z>y.

Proof. This follows from the definition of strict inequality just given and
axioms 1< and 3<. O

20 For any z,y,z € R

<yA(y<z) = (x<2),
(z<yYAN(y<z)= (z<2).
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Proof. We prove the first assertion as an example. By Axiom 2<, which as-
serts that the inequality relation is transitive, we have

@E<YA@y<2)e@<YAY<HNY#2) = (z<2).

It remains to be verified that x # z. But if this were not the case, we would
have

E<YAN[Y<2) L @Z<YA([Y<2) e @ZIYAY<)A(Yy#=2).

By Axiom 1< this relation would imply

(y=2)A(y#2),

which is a contradiction. 0O

e. Consequences of the Axioms Connecting Order with Addition
and Multiplication If in addition to the axioms of addition, multiplication,
and order, we use axioms (I,IIT) and (II, IIT), which connect the order with the
arithmetic operations, we can obtain, for example, the following propositions.

10, For any z,y,z,w € R
(<y) = (z+2)<(y+2),
0<z)= (—z<0),
E<yYAE<w) = (z+2) < (y+w),
<y Az<w)= (z+z<y+w).

Proof. We shall verify the first of these assertions.
By definition of strict inequality and the axiom (I,III) we have

E<y)=>(<y)=>(@+2)<(y+2).
It remains to be verified that x + 2z # y + 2. Indeed,
(z+2)=@W+2)=>(z=(y+2)—z=y+(2—2)=y),
which contradicts the assumption z < y. O
20, If z,y, 2 € R, then

O<z)A(0<y) = (0<zy),
(z<0)A(y<0) = 0<zy),
(z<0)A(0<y) = (zy<0),
(z<yyAN(0<2) =
(z<y)A(z<0) =

(zz <yz),
(yz < z2) .
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Proof. We shall verify the first of these assertions. By definition of strict
inequality and the axiom (ILIIT) we have

O0<z)A(0<y)=(0<2)A(0<y)= (0<2y).
Moreover, 0 # xy since, as already shown,
(z-y=0=(z=0V(y=0).
Let us further verify, for example, the third assertion:
(z<0)ANO0<y)=0<-z)AN0<y) =

=0<(-z)-y)=>0<((-1)-2)y) =
= (0< (1) (zy)) = (0< —(zy)) = (zy < 0) .0

The reader is now invited to prove the remaining relations independently
and also to verify that if nonstrict inequality holds in one of the parentheses
on the left-hand side, then the inequality on the right-hand side will also be
nonstrict.

39, 0<1.

Proof. We know that 1 € R\ 0, that is 0 # 1. If we assume 1 < 0, then by
what was just proved,

1<0)A(1l<0)=(0<1-1)=(0<1).

But we know that for any pair of numbers z,y € R exactly one of the possi-
bilities z < y, £ = y, * > y actually holds. Since 0 # 1 and the assumption
1 < 0 implies the relation 0 < 1, which contradicts it, the only remaining
possibility is the one in the statement of the proposition. O

42 O<z)=0<zHand 0<z)A(z<y)=O0<y HA@Y <z

Proof. Let us verify the first of these assertions. First of all, z71 # 0. As-
suming ! < 0, we obtain

(z7'<0)A(0<z)=(z-271<0)= (1<0).
This contradiction completes the proof. 0O

We recall that numbers larger than zero are called positive and those less
than zero negative.

Thus we have shown, for example, that 1 is a positive number, that the
product of a positive and a negative number is a negative number, and that
the reciprocal of a positive number is also positive.
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2.1.3 The Completeness Axiom and the Existence
of a Least Upper (or Greatest Lower) Bound of a Set of Numbers

Definition 2. A set X C R is said to be bounded above (resp. bounded below)
if there exists a number ¢ € R such that z < ¢ (resp. ¢ < z) for all z € X.

The number c in this case is called an upper bound (resp. lower bound) of
the set X. It is also called a majorant (resp. minorant) of X.

Definition 3. A set that is bounded both above and below is called bounded.

Definition 4. An element a € X is called the largest or mazimal (resp.
smallest or minimal) element of X if x < a (resp. a < z) for all z € X.

We now introduce some notation and at the same time give a formal
expression to the definition of maximal and minimal elements:

(a=maxX) = (a€ XAVz € X (z <a)),
(a=minX) := (a€e XAVz € X (a<2)) .

Along with the notation max X (read “the maximum of X”) and min X
(read “the minimum of X”) we also use the respective expressions mea,))(cx and
x

min z.
rzeX

It follows immediately from the order axiom 1< that if there is a maximal
(resp. minimal) element in a set of numbers, it is the only one.

However, not every set, not even every bounded set, has a maximal or
minimal element.

For example, the set X = {z € R|0 < z < 1} has a minimal element.
But, as one can easily verify, it has no maximal element.

Definition 5. The smallest number that bounds a set X C R from above
is called the least upper bound (or the ezxact upper bound) of X and denoted

sup X (read “the supremum of X”) or sup z.
zeX

This is the basic concept of the present subsection. Thus
(s=supX):=VzeX(z<s)A (Vs <sI' e X (s <a))).

The expression in the first set of parentheses on the right-hand side here
says that s is an upper bound for X; the expression in the second set says that
s is the smallest number having this property. More precisely, the expression
in the second set of parentheses asserts that any number smaller than s is
not an upper bound of X.

The concept of the greatest lower bound (or ezact lower bound) of a set
X is introduced similarly as the largest of the lower bounds of X.
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Definition 6.
(i=infX):=VzeX(i<z)A(Vi'>i3 € X (a' <7'))) .

Along with the notation inf X (read “the infimum of X”) one also uses the

notation 12§( z for the greatest lower bound of X.
x

Thus we have given the following definitions:
supX :=min{c€R|Vz € X (z <)},
inf X := max {ceR|Vz € X (c<z)}.

But we said above that not every set has a minimal or maximal element.
Therefore the definitions we have adopted for the least upper bound and
greatest lower bound require an argument, provided by the following lemma.

Lemma. (The least upper bound principle). Fvery nonempty set of real num-
bers that is bounded from above has a unique least upper bound.

Proof. Since we already know that the minimal element of a set of numbers
is unique, we need only verify that the least upper bound exists.

Let X C R be a given set and Y = {y € R|Vz € X (z < y)}. By
hypothesis, X # @ and Y # &. Then, by the completeness axiom there
exists ¢ € R such that Vz € XVy € Y (z < ¢ < y). The number c is therefore
both a majorant of X and a minorant of Y. Being a majorant of X, c is an
element of Y. But then, as a minorant of Y, it must be the minimal element
of Y. Thusc=minY =supX. 0O

Naturally the existence and uniqueness of the greatest lower bound of a
set of numbers that is bounded from below is analogous, that is, the following
proposition holds.

Lemma. (X bounded below) = (3! inf X).

We shall not take time to give the proof.

- We now return to the set X = {z € R|0 < z < 1}. By the lemma just
proved it must have a least upper bound. By the very definition of the set X
and the definition of the least upper bound, it is obvious that sup X < 1.

To prove that sup X = 1 it is thus necessary to verify that for any number
g < 1 there exists x € X such that ¢ < x; simply put, this means merely
that there are numbers between g and 1. This of course, is also easy to prove
independently (for example, by showing that ¢ < 271(¢+1) < 1), but we shall
not do so at this point, since such questions will be discussed systematically
and in detail in the next section.

As for the greatest lower bound, it always coincides with the minimal
element of a set, if such an element exists. Thus, from this consideration
alone we have inf X = 0 in the present example.

Other, more substantive examples of the use of the concepts introduced
here will be encountered in the next section.
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2.2 The Most Important Classes of Real Numbers
and Computational Aspects of Operations
with Real Numbers

2.2.1 The Natural Numbers and the Principle
of Mathematical Induction

a. Definition of the Set of Natural Numbers The numbers of the form
1,1+1, (14 1)+ 1, and so forth are denoted respectively by 1,2,3,... and
so forth and are called natural numbers.

Such a definition will be meaningful only to one who already has a com-
plete picture of the natural numbers, including the notation for them, for
example in the decimal system of computation.

The continuation of such a process is by no means always unique, so that
the ubiquitous “and so forth” actually requires a clarification provided by
the fundamental principle of mathematical induction.

Definition 1. A set X C R is inductive if for each number z € X, it also
contains x + 1.

For example, R is an inductive set; the set of positive numbers is also
inductive.

The intersection X = (] X, of any family of inductive sets X, if not
acA
empty, is an inductive set.

Indeed,

(weX: ﬂXa):(VaeA(zeXa)):

a€cA

= (Vae A((z+1) € X,)) = ((x+1)e ﬂXa=X) .

acA
We now adopt the following definition.

Definition 2. The set of natural numbers is the smallest inductive set con-
taining 1, that is, the intersection of all inductive sets that contain 1.

The set of natural numbers is denoted N; its elements are called natural
numbers.

From the set-theoretic point of view it might be more rational to begin
the natural numbers with 0, that is, to introduce the set of natural numbers
as the smallest inductive set containing 0; however, it is more convenient for
us to begin numbering with 1.

The following fundamental and widely used principle is a direct corollary
of the definition of the set of natural numbers.
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b. The Principle of Mathematical Induction If a subset E of the set of
natural numbers N is such that 1 € E and together with each number x € F,
the number x + 1 also belongs to E, then E = N.

Thus,

(ECN)AQ1€E)A(Vze€E(x€E= (z+1)€E))=E=N.

Let us illustrate this principle in action by using it to prove several useful
properties of the natural numbers that we will be using constantly from now
on.

1°. The sum and product of natural numbers are natural numbers.

Proof. Let m,n € N; we shall show that (m+n) € N. We denote by E the set
of natural numbers n for which (m +n) € N for all m € N. Then 1 € E since
(m € N) = ((m+1) €N) for any m € N. If n € E, that is, (m+n) € N, then
(n+1) € E also, since (m+ (n+ 1)) = ((m+n) + 1) € N. By the principle
of induction, E = N, and we have proved that addition does not lead outside
of N.

Similarly, taking F to be the set of natural numbers n for which (m-n) € N
for all m € N, we find that 1 € F, since m -1 = m, and if n € E, that is,
m-n € N, then m-(n+1) = mn+m is the sum of two natural numbers, which
belongs to N by what was just proved above. Thus (n € E) = ((n+1) € E),
and so by the principle of induction £ =N. O

2. (neN)A(n#1)= ((n—1) €N).

Proof. Consider the set E consisting of all real numbers of the form n — 1,
where n is a natural number different from 1; we shall show that £ = N.
Since 1 € N, it follows that 2 := (1+1) € N and hence 1 = (2 —-1) € E.
Ifme E,thenm =n—1, wheren € Nythen m+1=(n+1) — 1,
and since n + 1 € N, we have (m + 1) € E. By the principle of induction we
conclude that E=N. O

30. For any n € N the set {x € N|n < z} contains a minimal element,
namely
minfr e Njln<z}=n+1.

Proof. We shall show that the set E of n € N for which the assertion holds
coincides with N.
We first verify that 1 € E, that is,

min{z e N|[1 <z} =2.
We shall also verify this assertion by the principle of induction. Let

M={zeN|(z=1)VvV(2<2)}.
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By definition of M we have 1 € M. Then if x € M, either x = 1, in which
casex+1=2¢€ M, orelse 2 < z, and then 2 < (z + 1), and once again
(z+1) € M. Thus M =N, and hence if (z # 1) A (z € N), then 2 < z, that
is, indeed min{z € N|1 < z} = 2. Hence 1 € F.

We now show that if n € E, then (n+ 1) € E.

We begin by remarking that if z € {z € N|n+ 1 < z}, then

(z-1)=ye{yeNn<y}.

For, by what has already been proved, every natural number is at least as
large as 1; therefore (n+1 < z) = (1 < z) = (z # 1), and then by the
assertion in 2° we have (z — 1) =y € N.

Now let n € E, that is, min{y € N\n < y} =n+1. Thenz—1>y >n+1
and z > n + 2. Hence,

(re{zeNn+l<z})= (z>n+2)

and consequently, min{z € Njn+ 1<z} =n+2, thatis, (n+1) € E.
By the principle of induction E = N, and 3° is now proved. 0O

As immediate corollaries of 2° and 3° above, we obtain the following
properties (4%, 59, and 6°) of the natural numbers.

4. meN)A(meN)A(n<m)= (n+1<m).

50. The number (n+1) € N is the immediate successor of the number n € N;
that is, if n € N, there are no natural numbers x satisfyingn < x <n+ 1.

6°. If n € N and n # 1, then (n —1) € N and (n — 1) is the immediate
predecessor of n in N; that is, if n € N, there are no natural numbers x
satisfyingn — 1 < x < n.

‘We now prove one more property of the set of natural numbers.

79. In any nonempty subset of the set of natural numbers there is a minimal
element.

Proof. Let M C N. If 1 € M, then min M = 1, since Vn € N(1 < n).

Now suppose 1 ¢ M, that is, 1 € E = N\ M. The set F must contain a
natural number n such that all natural numbers not larger than n belong to
E, but (n+ 1) € M. If there were no such n, the set E C N, which contains
1, would contain along with each of its elements n, the number (n + 1) also;
by the principle of induction, it would therefore equal N. But the latter is
impossible, since N\ E = M # &.

The number (n + 1) so found must be the smallest element of M, since
there are no natural numbers between n and n + 1, as we have seen. O
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2.2.2 Rational and Irrational Numbers

a. The Integers

Definition 3. The union of the set of natural numbers, the set of negatives
of natural numbers, and zero is called the set of integers and is denoted Z.

Since, as has already been proved, addition and multiplication of natural
numbers do not take us outside N, it follows that these same operations on
integers do not lead outside of Z.

Proof. Indeed, if m,n € Z, either one of these numbers is zero, and then the
sum m + n equals the other number, so that (m+n) € Zand m-n =0 € Z,
or both numbers are non-zero. In the latter case, either m,n € N and then
(m+n) e NCZand (m-n) € N C Z, or (—m),(—n) € N and then
m-n = ((-1)m)((-1)n) € Nor (—m),n € N and then (—m - n) € N, that
is, m-n € Z, or, finally, m,—n € N and then (—m - n) € N and once again
m-n€Z 0O

Thus Z is an Abelian group with respect to addition. With respect to
multiplication Z is not a group, nor is Z \ 0, since the reciprocals of the
integers are not in Z (except the reciprocals of 1 and —1).

Proof. Indeed, if m € Z and m # 0,1, then assuming first that m € N, we
have 0 < 1 < m, and, sincem-m~! =1 > 0, we must have 0 < m~! < 1
(see the consequences of the order axioms in the previous subsection). Thus
m~! ¢ Z. The case when m is a negative integer different from —1 reduces
immediately to the one already considered. O

When k = m-n~! € Z for two integers m,n € Z, that is, when m =k -n
for some k € Z, we say that m is divisible by n or a multiple of n, or that n
is a divisor of m.

The divisibility of integers reduces immediately via suitable sign changes,
that is, through multiplication by —1 when necessary, to the divisibility of
the corresponding natural numbers. In this context it is studied in number
theory.

We recall without proof the so-called fundamental theorem of arithmetic,
which we shall use in studying certain examples.

A number p € N, p # 1, is prime if it has no divisors in N except 1 and p.

The fundamental theorem of arithmetic. Fach natural number admits
a representation as a product

n:pl...pk,

where p1, ..., Pk are prime numbers. This representation is unique except for
the order of the factors.
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Numbers m,n € Z are said to be relatively prime if they have no common
divisors except 1 and —1.

It follows in particular from this theorem that if the product m - n of
relatively prime numbers m and n is divisible by a prime p, then one of the
two numbers is also divisible by p.

b. The Rational Numbers

Definition 4. Numbers of the form m - n~!, where m,n € Z, are called
rational.

We denote the set of rational numbers by Q.

Thus, the ordered pair (m,n) of integers defines the rational number
g=m-n~tifn#0.

The number ¢ = m - n~! can also be written as a quotient? of m and n,
that is, as a so-called rational fraction .

The rules you learned in school for operating with rational numbers in
terms of their representation as fractions follow immediately from the defi-
nition of a rational number and the axioms for real numbers. In particular,
“the value of a fraction is unchanged when both numerator and denominator
are multiplied by the same non-zero integer”, that is, the fractions ’7’:—,’; and
 represent the same rational number. In fact, since (nk)(k~'n~!) = 1, that
is(n-k)~!=k"!-n"1, we have (mk)(nk)~! = (mk)(k"In" 1) =m .n7L

Thus the different ordered pairs (m,n) and (mk,nk) define the same
rational number. Consequently, after suitable reductions, any rational number
can be presented as an ordered pair of relatively prime integers.

On the other hand, if the pairs (mj,n1) and (m2,ns) define the same
rational number, that is, m; -nl_1 =mg - n;l, then minys = man,, and if,
for example, m; and mny are relatively prime, it follows from the corollary
of the fundamental theorem of arithmetic mentioned above that ng - ny* =
my-myl =ke€Z

We have thus demonstrated that two ordered pairs (ms,n;) and (mg, n2)
define the same rational number if and only if they are proportional. That
is, there exists an integer k € Z such that, for example, ms = km; and
Ng = knl.

c. The Irrational Numbers
Definition 5. The real numbers that are not rational are called irrational.
The classical example of an irrational real number is v/2, that is, the

number s € R such that s > 0 and s = 2. By the Pythagorean theorem, the

2 The notation Q comes from the first letter of the English word quotient, which
in turn comes from the Latin quota, meaning the unit part of something, and
quot, meaning how many.
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irrationality of v/2 is equivalent to the assertion that the diagonal and side
of a square are incommensurable.

Thus we begin by verifying that there exists a real number s € R whose
square equals 2, and then that s ¢ Q.

Proof. Let X and Y be the sets of positive real numbers such that Vz €
X (2?2 <2),Vy €Y (2 <y?). Since 1 € X and 2 €Y, it follows that X and
Y are nonempty sets.

Further, since (z < y) < (2% < y?) for positive numbers z and y, every
element of X is less than every element of Y. By the completeness axiom
there exists s € R such that z<s<yforallze X andallyeY.

We shall show that s? = 2.

If s2 < 2, then, for example, the number s + 2 =
s, would have a square less than 2. Indeed, we know that 1 € X, so that
12 <s?2<2 and 0 < A:=2—52 < 1. It follows that

2
(s+é) =32+2'é+<A) <s°+3. A <s +3- é=32+A=2.
3s 3s 3s 3s
Consequently, (s + %) € X, which is inconsistent with the inequality z < s
forall x € X.
If 2 < s2, then the number s — 323;2, which is smaller than s, would have
a square larger than 2. Indeed, we know that 2 € Y, so that 2 < s2 < 22 or

0<A:=s2-2<3and 0< £ < 1. Hence,

A\? 9 A AN2 ., A 9
<s 33) s 3s+< ) > s 333 s —-—A=2,

and we have now contradicted the fact that s is a lower bound of Y.

Thus the only remaining possibility is that s = 2.

Let us show, finally, that s ¢ Q. Assume that s€eQ and let Z* be an
irreducible representation of s. Then m? = 2-n2, so that m? is lelSlble by 2
and therefore m also is divisible by 2. But, if m = 2k, then 2k? = n2, and for
the same reason, n must be divisible by 2. But this contradicts the assumed
irreducibility of the fraction 7. O

We have worked hard just now to prove that there exist irrational num-
bers. We shall soon see that in a certain sense nearly all real numbers are
irrational. It will be shown that the cardinality of the set of irrational num-
bers is larger than that of the set of rational numbers and that in fact the
former equals the cardinality of the set of real numbers.

Among the irrational numbers we make a further distinction between the
so-called algebraic irrational numbers and the transcendental numbers.

A real number is called algebraic if it is the root of an algebraic equation

az" + - +ap_1x+a, =0

with rational (or equivalently, integer) cofficients.
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Otherwise the number is called transcendental.

We shall see that the cardinality of the set of algebraic numbers is the
same as that of the set of rational numbers, while the cardinality of the set
of transcendental numbers is the same as that of the set of real numbers.
For that reason the difficulties involved in exhibiting specific transcendental
numbers — more precisely, proving that a given number is transcendental —
seem at first sight paradoxical and unnatural.

For example, it was not proved until 1882 that the classical geometric
number 7 is transcendental,® and one of the famous Hilbert* problems was
to prove the transcendence of the number o, where « is algebraic, (a >
0) A (e # 1) and 8 is an irrational algebraic number (for example, a = 2,

B =V2).

2.2.3 The Principle of Archimedes

We now turn to the principle of Archimedes,® which is important in both its
theoretical aspect and the application of numbers in measurement and com-
putations. We shall prove it using the completeness axiom (more precisely,
the least-upper-bound principle, which is equivalent to the completeness ax-
iom). In other axiom systems for the real numbers this fundamental principle
is frequently included in the list of axioms.

We remark that the propositions that we have proved up to now about the
natural numbers and the integers have made no use at all of the complete-
ness axiom. As will be seen below, the principle of Archimedes essentially
reflects the properties of the natural numbers and integers connected with
completeness. We begin with these properties.

3 The number 7 equals the ratio of the circumference of a circle to its diameter
in Euclidean geometry. That is the reason this number has been conventionally
denoted since the eighteenth century, following Euler by m, which is the initial
letter of the Greek word meptpépra — periphery (circumference). The transcen-
dence of m was proved by the German mathematician F. Lindemann (1852-1939).
It follows in particular from the transcendence of 7 that it is impossible to con-
struct a line segment of length = with compass and straightedge (the problem
of rectification of the circle), and also that the ancient problem of squaring the
circle cannot be solved with compass and straightedge.

D. Hilbert (1862-1943) — outstanding German mathematician who stated 23
problems from different areas of mathematics at the 1900 International Congress
of Mathematicians in Paris. These problems came to be known as the “Hilbert
problems”. The problem mentioned here (Hilbert’s seventh problem) was given
an affirmative answer in 1934 by the Soviet mathematician A. O. Gel’fond (1906—
1968) and the German mathematician T. Schneider (1911-1989).

Archimedes (287-212 BCE) - brilliant Greek scholar, about whom Leibniz, one
of the founders of analysis said, “When you study the works of Archimedes, you
cease to be amazed by the achievements of modern mathematicians.”

'S

w



2.2 Classes of Real Numbers and Computations 53

19. Any nonempty subset of natural numbers that is bounded from above con-
tains a mazimal element.

Proof. If E C N is the subset in question, then by the least-upper-bound
lemma, J!'supE = s € R. By definition of the least upper bound there is
a natural number n € FE satisfying the condition s — 1 < n < s. But then,
n = max F, since a natural number that is larger than n must be at least
n+1l,andn+1>s. 0O

Corollaries 2°. The set of natural numbers is not bounded above.

Proof. Otherwise there would exist a maximal natural number. But n < n+1.
O

30. Any nonempty subset of the integers that is bounded from above contains
a mazimal element.

Proof. The proof of 1° can be repeated verbatim, replacing N with Z. O

4%, Any nonempty subset of integers that is bounded below contains a minimal
element.

Proof. One can, for example, repeat the proof of 1°, replacing N by Z and
using the greatest-lower-bound principle instead of the least-upper-bound
principle.

Alternatively, one can pass to the negatives of the numbers (“change
signs”) and use what has been proved in 3°. O

50. The set of integers is unbounded above and unbounded below.
Proof. This follows from 3° and 4°, or directly from 2°. O

We can now state the principle of Archimedes.

6°. (Theprinciple of Archimedes). For any fized positive number h and
any real number x there exists a unique integer k such that (k—1)h < z < kh.

Proof. Since Z is not bounded above, the set {n € Z| £ < n} is a nonempty
subset of the integers that is bounded below. Then (see 4°) it contains a
minimal element k, that is (k — 1) < z/h < k. Since h > 0, these inequalities
are equivalent to those given in the statement of the principle of Archimedes.
The uniqueness of k € Z satisfying these two inequalities follows from the
uniqueness of the minimal element of a set of numbers (see Subsect. 2.1:3).
0O

And now some corollaries:

70. For any positive number € there exists a natural number n such that
0<ice
n
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Proof. By the principle of Archimedes there exists n € Z such that 1 < €-n.
Since 0 < 1 and 0 < &, we have 0 < n. ThusneNand0<%<a. O

8. If the number = € R is such that 0 < z and = < = for all n € N, then
z =0.

Proof. The relation 0 < z is impossible by virtue of 7°. 0O

9%, For any numbers a,b € R such that a < b there is a rational number
r € Q such that a <1 < b.

Proof. Taking account of 7°, we choose n € N such that 0 < £ < b—a. By the
principle of Archimedes we can find a number m € Z such that n= l<a<m
Then ' < b, since otherwise we would have ™= l <a<b< @ from Wthh
it would follow that }L >b—a. Thusr=T7€Qanda< 7 <b ]

10°. For any number x € R there exists a unique integer k € Z such that
k<z<k+1.

Proof. This follows immediately from the principle of Archimedes. O

The number k just mentioned is denoted [z] and is called the integer part
of z. The quantity {z} := z — [z] is called the fractional part of z. Thus
z = [z] + {z}, and {z} > 0.

2.2.4 The Geometric Interpretation of the Set of Real Numbers
and Computational Aspects of Operations with Real Numbers

a. The Real Line In relation to real numbers we often use a descriptive
geometric language connected with a fact that you know in general terms
from school. By the axioms of geometry there is a one-to-one correspondence
f : L —» R between the points of a line L and the set R of real numbers.
Moreover this correspondence is connected with the rigid motions of the line.
To be specific, if T' is a parallel translation of the line L along itself, there
exists a number t € R (depending only on T) such that f(T(z)) = f(z) +¢
for each point z € L.

The number f(z) corresponding to a point z € L is called the coordinate of
z. In view of the one-to-one nature of the mapping f : L — R, the coordinate
of a point is often called simply a point. For example, instead of the phrase
“let us take the point whose coordinate is 1” we say “let us take the point 1”.
Given the correspondence f : L — R, we call the line L the coordinate azxis
or the number azis or the real line. Because f is bijective, the set R itself is
also often called the real line and its points are called points of the real line.

As noted above, the bijective mapping f : L — R that defines coordinates
on L has the property that under a parallel translation T" the coordinates of
the images of points of the line L differ from the coordinates of the points
themselves by a number ¢ € R, the same for every point. For this reason f
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is determined completely by specifying the point that is to have coordinate
0 and the point that is to have coordinate 1, or more briefly, by the point 0,
called the origin, and the point 1. The closed interval determined by these
points is called the unit interval. The direction determined by the ray with
origin at 0 containing 1 is called the positive direction and a motion in that
direction (from 0 to 1) is called a motion from left to right. In accordance
with this convention, 1 lies to the right of 0 and 0 to the left of 1.

Under a parallel translation T' that moves the origin zy to the point
x1 = T(zo) with coordinate 1, the coordinates of the images of all points are
one unit larger than those of their pre-images, and therefore we locate the
point o = T'(z;) with coordinate 2, the point z3 = T(x2) with coordinate
3,..., and the point 41 = T(z,) with coordinate n+ 1, as well as the point
x_1 = T71(zo) with coordinate —1,..., the point z_,,_; = T~ !(z_,) with
coordinate —n — 1. In this way we obtain all points with integer coordinates
m € Z.

Knowing how to double, triple,... the unit interval, we can use Thales’
theorem to partition this interval into n congruent subintervals. By taking
the subinterval having an endpoint at the origin, we find that the coordinate
of its other end, which we denote by z, satisfies the equation n - z = 1, that
is, x = % From this we find all points with rational coordinates 7 € Q.

But there still remain points of L, since we know there are intervals in-
commensurable with the unit interval. Each such point, like every other point
of the line, divides the line into two rays, on each of which there are points
with integer or rational coordinates. (This is a consequence of the original
geometric principle of Archimedes.) Thus a point produces a partition, or, as
it is called, a cut of Q into two nonempty sets X and Y corresponding to the
rational points (points with rational coordinates) on the left-hand and right-
hand rays. By the axiom of completeness, there is a number ¢ that separates
Xand Y, thatis,z <c<yforallz € X and ally € Y. Since XUY =Q, it
follows that sup X = s =i = inf Y. For otherwise, s < ¢ and there would be a
rational number between s and 4 lying neither in X norin Y. Thus s =i =c.
This uniquely determined number c is assigned to the corresponding point of
the line.

The assignment of coordinates to points of the line just described provides
a visualizable model for both the order relation in R (hence the term “linear
ordering”) and for the axiom of completeness or continuity in R, which in
geometric language means that there are no “holes” in the line L., which would
separate it into two pieces having no points in common. (Such a separation
could only come about by use of some point of the line L.)

We shall not go into further detail about the construction of the mapping
f : L — R, since we shall invoke the geometric interpretation of the set of
real numbers only for the sake of visualizability and perhaps to bring into
play the reader’s very useful geometric intuition. As for the formal proofs,
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just as before, they will rely either on the collection of facts we have obtained
from the axioms for the real numbers or directly on the axioms themselves.

Geometric language, however, will be used constantly.

We now introduce the following notation and terminology for the number
sets listed below:

la,b[:= {z € R|a < z < b} is the open interval ab;

[a,b] := {z € R|a < = < b} is the closed interval ab;

la,b] := {z € R|a < z < b} is the half-open interval ab containing b;

[a,b]:= {z € R|a < z < b} is the half-open interval ab containing a.

Definition 6. Open, closed, and half-open intervals are called numerical in-
tervals or simply intervals. The numbers determining an interval are called
its endpoints.

The quantity b—a is called the length of the interval ab. If I is an interval,
we shall denote its length by |I|. (The origin of this notation will soon become

. clear.)
The sets
la,+oo[:={z €Rla<z}, ]—o00,b:={zeR|z<b}
[a,+oo[:={z € R|a < z}, ] —o00,b] :={z e Rz < b}

and | — 0o, +oo[:= R are conventionally called unbounded intervals or infinite
intervals.

In accordance with this use of the symbols +oco (read “plus infinity”)
and —oo (read “minus infinity”) it is customary to denote the fact that the
numerical set X is not bounded above (resp. below), by writing sup X = +o00
(inf X = —00).

Definition 7. An open interval containing the point € R will be called a
neighborhood of this point.

In particular, when § > 0, the open interval |z — §,z + [ is called the
d-neighborhood of z. Its length is 24.

The distance between points z,y € R is measured by the length of the
interval having them as endpoints.

So as not to have to investigate which of the points is “left” and which is
“right”, that is, whether x < y or y <  and whether the length is y — z or
z — vy, we can use the useful function

x whenz >0,
|zl =< 0 whenz =0,
—x when z < 0,

which is called the modulus or absolute value of the number.

Definition 8. The distance between z,y € R is the quantity |z — y|.
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The distance is nonnegative and equals zero only when the points z and
y are the same. The distance from z to y is the same as the distance from y
to z, since |x — y| = |y — z|. Finally, if z € R, then |z —y| < |z — 2| + |z — y|-
That is, the so-called triangle inequality holds.

The triangle inequality follows from a property of the absolute value that
is also called the triangle inequality (since it can be obtained from the pre-
ceding triangle inequality by setting z = 0 and replacing y by —y). To be
specific, the inequality

|z +y| < || + [y

holds for any numbers x and y, and equality holds only when the numbers
and y are both negative or both positive.

Proof. 0 <zand 0 < y,then0 < z+y, |[r+y|l =z+vy, |z| =z, and
ly| = v, so that equality holds in this case.

Ifz<O0andy<O0,thenz+y <0, |z+y|=—-(z+y) =-z—vy, |z| = -z,
ly| = —y, and again we have equality.

Now suppose one of the numbers is negative and the other positive, for
example, x < 0 < y. Then either z < x+y < 0or 0 < z+ y < y. In the first
case |x + y| < |z|, and in the second case |x + y| < |y|, so that in both cases
lz+yl < |zl +yl. O

Using the principle of induction, one can verify that
|Z1 + -+ zn| < z1| + -+ |20

and equality holds if and only if the numbers zi,...,z, are all nonnegative
or all nonpositive.
The number “‘2H’ is often called the midpoint or center of the interval with
endpoints a and b, since it is equidistant from the endpoints of the interval.
In particular, a point z € R is the center of its -neighborhood |z —4, z+4]

and all points of the §-neighborhood lie at a distance from z less than 4.

b. Defining a Number by Successive Approximations In measuring a
real physical quantity, we obtain a number that, as a rule, changes when the
measurement is repeated, especially if one changes either the method of mak-
ing the measurement or the instrument used. Thus the result of measurement
is usually an approximate value of the quantity being sought. The quality or
precision of a measurement is characterized, for example, by the magnitude
of the possible discrepancy between the true value of the quantity and the
value obtained for it by measurement. When this is done, it may happen
that we can never exhibit the exact value of the quantity (if it exists theo-
retically). Taking a more constructive position, however, we may (or should)
consider that we know the desired quantity completely if we can measure it
with any preassigned precision. Taking this position is tantamount to identi-
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fying the number with a sequence® of more and more precise approximations
by numbers obtained from measurement. But every measurement is a finite
set of comparisons with some standard or with a part of the standard com-
mensurable with it, so that the result of the measurement will necessarily be
expressed in terms of natural numbers, integers, or, more generally, rational
numbers. Hence theoretically the whole set of real numbers can be described
in terms of sequences of rational numbers by constructing, after due analysis,
a mathematical copy or, better expressed, a model of what people do with
numbers who have no notion of their axiomatic description. The latter add
and multiply the approximate values rather than the values being measured,
which are unknown to them. (To be sure, they do not always know how to
say what relation the result of these operations has to the result that would
be obtained if the computations were carried out with the exact values. We
shall discuss this question below.)

Having identified a number with a sequence of approximations to it, we
should then, for example, add the sequences of approximate values when we
wish to add two numbers. The new sequence thus obtained must be regarded
as a new number, called the sum of the first two. But is it a number? The sub-
tlety of the question resides in the fact that not every randomly constructed
sequence is the sequence of arbitrarily precise approximations to some quan-
tity. That is, one still has to learn how to determine from the sequence itself
whether it represents some number or not. Another question that arises in
the attempt to make a mathematical copy of operations with approximate
numbers is that different sequences may be approximating sequences for the
same quantity. The relation between sequences of approximations defining
a number and the numbers themselves is approximately the same as that
between a point on a map and an arrow on the map indicating the point.
The arrow determines the point, but the point determines only the tip of the
arrow, and does not exclude the use of a different arrow that may happen to
be more convenient.

A precise description of these problems was given by Cauchy,” who carried
out the entire program of constructing a model of the real numbers, which we
have only sketched. One may hope that after you study the theory of limits
you will be able to repeat these constructions independently of Cauchy.

What has been said up to now, of course, makes no claim to mathematical
rigor. The purpose of this informal digression has been to direct the reader’s
attention to the theoretical possibility that more than one natural model of
the real numbers may exist. I have also tried to give a picture of the relation

6 If n is the number of the measurement and z, the result of that measurement,
the correspondence n — x,, is simply a function f : N — R of a natural-number
argument, that is, by definition a sequence (in this case a sequence of numbers).
Section 3.1 is devoted to a detailed study of numerical sequences.

" A.Cauchy (1789-1857) — French mathematician, one of the most active creators
of the language of mathematics and the machinery of classical analysis.
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of numbers to the world around us and to clarify the fundamental role of
natural and rational numbers. Finally, I wished to show that approximate
computations are both natural and necessary.

The next part of the present section is devoted to simple but important
estimates of the errors that arise in arithmetic operations on approximate
quantities. These estimates will be used below and are of independent interest.

We now give precise statements.

Definition 9. If z is the exact value of a quantity and Z a known approxi-
mation to the quantity, the numbers

and A®)
I
0(%) = ——=
|z
are called respectively the absolute and relative error of approximation by Z.
The relative error is not defined when % = 0.

Since the value z is unknown, the values of A(Z) and §(Z) are also un-
known. However, one usually knows some upper bounds A(Z) < A and
8(%) < 6 for these quantities. In this case we say that the absolute or relative
error does not exceed A or § respectively. In practice we need to deal only
with estimates for the errors, so that the quantities A and § themselves are
often called the absolute and relative errors. But we shall not do this.

The notation £ =%+ A means that T — A<z <% + A.

For example,

gravitational constant G = (6.672598 4 0.00085) - 101N - m? /kg?,
speed of light in vacuo c 299792458 m /s (exactly),

Planck’s constant h (6.6260755 & 0.0000040) - 10734 - s,
charge of an electron e = (1.60217733 £ 0.00000049) - 10~°Coul,

rest mass of an electron m. = (9.1093897 & 0.0000054) - 10~3! kg .

The main indicator of the precision of a measurement is the relative error
in approximation, usually expressed as a percent.
Thus in the examples just given the relative errors are at most (in order):

13-107%; 0; 6-1077; 31-107%; 6-1077
or, as percents of the measured values,
13-107%%; 0%; 6-107°%; 31-107%%; 6-107°%.

We now estimate the errors that arise in arithmetic operations with ap-
proximate quantities.
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Proposition. If
lz— 2| = A@Z), ly—3l=A4®1),
then

A +9) = l(z+y) - (Z+9) < AZ)+A®), (2.1)
A -g) = |z y— 29| < [Z]A®@) + |9|A@) + A@@) - A®G) ;. (2.2)

if, in addition,

Aw)

y#0, §#0 and 8(§) = 2= <1,
fhen ; B 5AG) +l6lA@) 1
Af):f_f 7A@ +lglAE@) 1 .
(.ﬂ e 7 -6 23)
Proof. Let x =%+ a and y = g+ . Then
AZ+9) =(z+y) - (@+7)| =la+ 8| <ol +18] = AE) + A®G) ,
AZ-g)=lzy—-2-9l=E@+a)[F+p) -2 -9 =
= |28 + ga + of| < 12| |B| + || |a] + |aB] =
= |Z|A®@) + [71A@E) + AZ) - AF)
<5:) z I T — yi
A = =|—-——=Z| = o =
Y () Y vy
_|@E+a)i— (y+ﬂ)w| 1 ‘<Iillﬁ|+l.ﬂllal- T
7 1+6/5| = 7 1-6(3)
_EA@+igla@) 1
7 1-6(9)

These estimates for the absolute errors imply the following estimates for
the relative errors:

L AZ) + AG) ,
6(z+9) < T (2.1)
o(x-g) <o(x)+6(y) +d(9)-6(3), (2.2)
T 3(Z) +4(9) ,
‘5(y)— T—6G) (23

In practice, when working with sufficiently good approximations, we have
A(Z) - A(g) = 0, §(Z) - 6(F) = 0, and 1 — §(§) ~ 1, so that one can use the
following simplified and useful, but formally incorrect, versions of formulas
(2.2), (2.3), (2.2"), and (2.3'):
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A(Z-9) < |2|A®9) + 191AE) ,
a(2) < 180 4586
= =2
) Y
6(z-9) < 6(2)+46(9),
5 (%) < 5(2) + (7).

INA

)

Formulas (2.3) and (2.3’) show that it is necessary to avoid dividing by a
number that is near zero and also to avoid using rather crude approximations
in which § or 1 — §(§) is small in absolute value.

Formula (2.1’) warns against adding approximate quantities if they are
close to each other in absolute value but opposite in sign, since then |Z + 3|
is close to zero.

In all these cases, the errors may increase sharply.

For example, suppose your height has been measured twice by some de-
vice, and the precision of the measurement is £0.5cm. Suppose a sheet of
paper was placed under your feet before the second measurement. It may
nevertheless happen that the results of the measurement are as follows:
H; = (200 + 0.5) cm and Hs = (199.8 £ 0.5) cm respectively.

It does not make sense to try to find the thickness of the paper in the
form of the difference Hy — H;, from which it would follow only that the
thickness of the paper is not larger than 0.8 cm. That would of course be a
crude reflection (if indeed one could even call it a “reflection”) of the true
situation.

However, it is worthwhile to consider another more hopeful computational
effect through which comparatively precise measurements can be carried out
with crude devices. For example, if the device just used for measuring your
height was used to measure the thickness of 1000 sheets of the same paper,
and the result was (20 & 0.5) cm, then the thickness of one sheet of paper
is (0.02 £ 0.0005) cm, which is (0.2 £+ 0.005) mm, as follows from formula
(2.1).

That is, with an absolute error not larger than 0.005 mm, the thickness of
one sheet is 0.2 mm. The relative error in this measurement is at most 0.025
or 2.5%.

This idea can be developed and has been proposed, for example, as a way
of detecting a weak periodic signal amid the larger random static usually
called white noise.

c. The Positional Computation System It was stated above that every
real number can be presented as a sequence of rational approximations. We
now recall a method, which is important when it comes to computation, for
constructing in a uniform way a sequence of such rational approximations
for every real number. This method leads to the positional computation sys-
tem.
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Lemma. If a number ¢ > 1 is fixed, then for every positive number x € R
there exists a unique integer k € Z such that

qk—15w<qk.

Proof. We first verify that the set of numbers of the form ¢*, k € N, is
not bounded above. If it were, it would have a least upper bound s, and by
definition of the least upper bound, there would be a natural number m € N
such that £ < ¢™ < s. But then s < ¢™*!, so that s could not be an upper
bound of t?le set.

Since 1 < g, it follows that ¢™ < ¢ when m < n for all m,n € Z. Hence
we have also shown that for every real number ¢ € R there exists a natural
number N € N such that ¢ < ¢" for all n > N.

It follows that for any € > 0 there exists M € N such that qim < ¢ for all
natural numbers m > M.

Indeed, it suffices to set ¢ = % and N = M; then % < q™ when m > M.

Thus the set of integers m € Z satisfying the inequality = < ¢™ for x > 0
is bounded below. It therefore has a minimal element k, which obviously will
be the one we are seeking, since, for this integer, ¢*~! < = < ¢*.

The uniqueness of such an integer k follows from the fact that if m,n € Z
and, for example, m < n, then m < n — 1. Hence if ¢ > 1, then g™ < g™~ 1.

Indeed, it can be seen from this remark that the inequalities ¢! <z < ¢™
and ¢"~! < z < ¢", which imply ¢"~! < z < ¢™, are incompatible if m # n.
O

We shall use this lemma in the following construction. Fix ¢ > 1 and take
an arbitrary positive number z € R. By the lemma we find a unique number
p € Z such that

@ <z <gttt. (2.4)

Definition 10. The number p satisfying (2.4) is called the order of = in the
base q or (when g is fixed) simply the order of z.

By the principle of Archimedes, we find a unique natural number o, € N

such that
opg? <z < apg? 4¢P . (2.5)

Taking (2.4) into account, one can assert that o, € {1,...,¢ — 1}.

All of the subsequent steps in our construction will repeat the step we are
about to take, starting from relation (2.5).

It follows from relation (2.5) and the principle of Archimedes that there
exists a unique number a,_; € {0,1,...,q — 1} such that

apg® + ap—lqp—l <z <o+ ap—lqp—l +q¢ . (2.6)
If we have made n such steps, obtaining the relation

apg? +0p-1¢? 7+ apngP " <
<z <apg?+ Olp—lqp_1 +otopng®T"+ ¢,
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then by the principle of Archimedes there exists a unique number a,_,_1 €
{0,1,...,q — 1} such that
apqp +-+ O‘p—nqp_n + ap—n—lqp_n_l <
z<apg’ 4+ apg? "+ ap—n—lqp_n_l +gP

Thus we have exhibited an algorithm by means of which a sequence of
numbers o, 0p—1, . .., 0p—_n, ... from the set {0,1,...,¢—1} is placed in cor-
respondence with the positive number z. Less formally, we have constructed
a sequence of rational numbers of the special form

T =0apg® + -+ ap_ng® ", (2.7)

and such that

rh < T < T+ (2.8)

qm P’

In other words, we construct better and better appproximations from
below and from above to the number z using the special sequence (2.7). The
symbol ayp,...0p—r ... is a code for the entire sequence {r,}. To recover the
sequence {r,} from this symbol it is necessary to indicate the value of p, the
order of z.

For p > 0 it is customary to place a period or comma after ag; for p < 0,
the convention is to place |p| zeros left of oy, and a period or comma right of
the leftmost zero (we recall that o, # 0).

For example, when g = 10,

123.45:=1-102+2-10* +3-10°+4-1071 +5-1072,
0.00123:=1-10"3+2.107%+3-107%;

and when q = 2,
1000.001 :=1-23+1.273 .

Thus the value of a digit in the symbol o, . . . ap—p, . . . depends on the position
it occupies relative to the period or comma.

With this convention, the symbol o, . . . ap. . . . makes it possible to recover
the whole sequence of approximations.

It can be seen by inequalities (2.8) (verify this!) that different sequences
{rn} and {r},}, and therefore different symbols e, ... . ... and ay, ... . . . .,
correspond to different numbers z and z’.

‘We now answer the question whether some real number z € R corresponds
to every symbol oy, ... 00.. ... The answer turns out to be negative.

We remark that by virtue of the algorithm just described for obtaining
the numbers a;,—, € {0,1,...,q — 1} successively, it cannot happen that all
these numbers from some point on are equal to ¢ — 1.

Indeed, if

Tn=apl® + k@ (g 1)+ (g - 1P
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for all n > k, that is,

1 1
Tn =Tk + qk—P — qn—P y (29)
then by (2.8) we have
Tk + = - e <z<rg+ =
Then for any n > k
1
T < =g

which, as we know from 8° above, is impossible.
It is also useful to note that if at least one of the numbers
Op—k—1,--.,0p_p is less than ¢ — 1, then instead of (2.9) we can write

1 1

N

rn < Tk +

or, what is the same

(2.10)

Tn p
We can now prove that any symbol a, .. . ap. . . . composed of the numbers
o € {0,1,...,q9 — 1}, and in which there are numbers different from ¢ — 1
with arbitrarily large indices, corresponds to some number z > 0.
Indeed, from the symbol o . .. ap—y, . . . let us construct the sequence {r,}
of the form (2.7). By virtue of the relations rop < r; < r, < ---, taking account
of (2.9) and (2.10), we have

o STy <

IN

1 1 1
L LSyt — < - <r1+—<'r0—|—— (2.11)
q

The strict inequalities in this last relation should be understood as follows:
every element of the left-hand sequence is less than every element of the right-
hand sequence. This follows from (2.10).

If we now take z = sup ra( = 1nf (rn + ¢g~(™=P))), then the sequence

{rn} will satisfy condltlons (2 7) and (2 8) that is, the symbol oy, ... 0p—p . ..
corresponds to the number z € R.

Thus, we have established a one-to-one correspondence between the pos-
itive numbers x € R and symbols of the form op...ap,... if p > 0 or
0,0...00ap... if p < 0. The symbol assigned to z is called the g-ary rep-
——

|p| zeros
resentation of x; the numbers that occur in the symbol are called its digits,

and the position of a digit relative to the period is called its rank.

We agree to assign to a number x < 0 the symbol for the positive number
—z, prefixed by a negative sign. Finally, we assign the symbol 0.0...0... to
the number 0.
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In this way we have constructed the positional q-ary system of writing
real numbers.

The most useful systems are the decimal system (in common use) and for
technical reasons the binary system (in electronic computers). Less common,
but also used in some parts of computer engineering are the ternary and octal
systems.

Formulas (2.7) and (2.8) show that if only a finite number of digits
are retained in the g-ary expression of z (or, if we wish, we may say that
the others are replaced with zeros), then the absolute error of the result-
ing approximation (2.7) for  does not exceed one unit in the last rank re-
tained.

This observation makes it possible to use the formulas obtained in Para-
graph b to estimate the errors that arise when doing arithmetic operations
on numbers as a result of replacing the exact numbers by the corresponding
approximate values of the form (2.7).

This last remark also has a certain theoretical value. To be specific, if
we identify a real number z with its g-ary expression, as was suggested in
Paragraph b, once we have learned to perform arithmetic operations di-
rectly on the g-ary symbols, we will have constructed a new model of the
real numbers, seemingly of greater value from the computational point of
view.

The main problems that need to be solved in this direction are the fol-
lowing:

To two g-ary symbols it is necessary to assign a new symbol representing
their sum. It will of course be constructed one step at a time. To be specific,
by adding more and more precise rational approximations of the original
numbers, we shall obtain rational approximations corresponding to their sum.
Using the remark made above, one can show that as the precision of the
approximations of the terms increases, we shall obtain more and more ¢-ary
digits of the sum, which will then not vary under subsequent improvements
in the approximation.

This same problem needs to be solved with respect to multiplication.

Another, less constructive, route for passing from rational numbers to all
real numbers is due to Dedekind.

Dedekind identifies a real number with a cut in the set Q of rational
numbers, that is, a partition of Q into two disjoint sets A and B such that
a < bforalla € Aandall b€ B. Under this approach to real numbers
our axiom of completeness (continuity) becomes a well-known theorem of
Dedekind. For that reason the axiom of completeness in the form we have
given it is sometimes called Dedekind’s axiom.

To summarize, in the present section we have exhibited the most impor-
tant classes of numbers. We have shown the fundamental role played by the
natural and rational numbers. It has been shown how the basic properties of
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these numbers follow from the axiom system® we have adopted. We have given
a picture of various models of the set of real numbers. We have discussed the
computational aspects of the theory of real numbers: estimates of the errors
arising during arithmetical operations with approximate magnitudes, and the
g-ary positional computation system.

2.2.5 Problems and Exercises

1. Using the principle of induction, show that

a) the sum z; +- - -+, of real numbers is defined independently of the insertion
of parentheses to specify the order of addition;

b) the same is true of the product zi - - - zn;

O fo1 + -+l < laal 4+ foal;

d) |21+ Tn| = |21 - |20}

e) ((m,n eN)A(m < n)) = ((n— m) € N);

f) (14 z)® > 1+ nz for z > —1 and n € N, equality holding only when n =1
or ¢ = 0 (Bernoulli’s inequality);

g) (a+b)" =a™+La" b+ 11%a”‘zb2 +- 4 %abn—l +b"™ (Newton’s
binomial formula);
2. a) Verify that Z and Q are inductive sets.

b) Give examples of inductive sets different from N, Z, Q, and R.

3. Show that an inductive set is not bounded above.

4. a) An inductive set is infinite (that is, equipollent with one of its subsets different
from itself).

b) The set E, = {x € N|z < n} is finite. (We denote card E, by n.)

5. (The Fuclidean algorithm) Let m,n € N and m > n. Their greatest common
divisor (gecd (m,n) = d € N) can be found in a finite number of steps using the
following algorithm of Euclid involving successive divisions with remainder.

m=qn-+rm (r1 <m),
n=gqor1+r2 (r2<r1),
71 = q3T2+ T3 (ra <re),

Th—1 = qr+17k + 0.

Then d = ri.
b) If d = gcd (m, n), one can choose numbers p, ¢ € Z such that pm + gn = d;
in particular, if m and n are relatively prime, then pm + gn = 1.

8 It was stated by Hilbert in almost the form given above at the turn of the twen-
tieth century. See for example Hilbert, D. Foundations of Geometry, Chap. 111,
§ 13. (Translated from the second edition of Grundlagen der Geometrie, La Salle,
Illinois: Open Court Press, 1971. This section was based on Hilbert’s article
“Uber den Zahlbegrift” in Jahresbericht der deutschen Mathematikervereinigung
8 (1900).).
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6. Try to give your own proof of the fundamental theorem of arithmetic (Paragraph
a in Subsect. 2.2.2).

7. If the product m - n of natural numbers is divisible by a prime p, that is,
m-n =p-k, where k € N, then either m or n is divisible by p.

8. It follows from the fundamental theorem of arithmetic that the set of prime
numbers is infinite.

9. Show that if the natural number n is not of the form k™, where k, m € N, then
the equation ™ = n has no rational roots.

10. Show that the expression of a rational number in any g-ary computation system
is periodic, that is, starting from some rank it consists of periodically repeating
groups of digits.

11. Let us call an irrational number a € R well approzimated by rational numbers

if for any natural numbers n, N € N there exists a rational number ‘3’ such that

_kr 1
a2 < 5.
a) Construct an example of a well-approximated irrational number.

b) Prove that a well-approximated irrational number cannot be algebraic, that
is, it is transcendental (Liouville’s theorem).®

12. Knowing that 7 :=m- n~! by definition, where m € Z and n € N, derive the
“rules” for addition, multiplication, and division of fractions, and also the condition
for two fractions to be equal.

13. Verify that the rational numbers Q satisfy all the axioms for real numbers
except the axiom of completeness.

14. Adopting the geometric model of the set of real numbers (the real line), show
how to construct the numbers a + b, a — b, ab, and % in this model.

15. a) Illustrate the axiom of completeness on the real line.

b) Prove that the least-upper-bound principle is equivalent to the axiom of
completeness.

16. a) If A C B C R, then sup A < sup B and inf A > inf B.

b)Let ROX #Pand RDY #@. Ifz <yforallz € X and all y € Y, then
X is bounded above, Y is bounded below, and sup X < infY.

c) If the sets X,Y in b) are such that X UY =R, then sup X = infY.

d) If X and Y are the sets defined in c), then either X has a maximal element
or Y has a minimal element. (Dedekind’s theorem.)

e) (Continuation.) Show that Dedekind’s theorem is equivalent to the axiom of
completeness.

® J. Liouville (1809-1882) — French mathematician, who wrote on complex analysis,
geometry, differential equations, number theory, and mechanics.
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17. Let A+ B be the set of numbers of the form a+b and A- B the set of numbers
of the form a - b, where a € A C R and b € B C R. Determine whether it is always
true that

a) sup(A + B) = sup A + sup B,

b) sup(A- B) =sup A - sup B.

18. Let —A be the set of numbers of the form —a, where a € A C R. Show that
sup(—A) = —inf A.

19. a) Show that for n € N and a > 0 the equation z" = a has a positive root
(denoted {/a or a'/™).

b) Verify that for a >0, 5> 0, and n,m € N
Vab= ¥Ya- Vb and 3}/ Va= "7a.

c) (a%)m = (am)% =:a™'™ and a'/™ - @}/™ = g/,
d) (am/n)—l — (a—l)m/n = a—m/n'

e) Show that for all 71,72 € Q

T1 m1+72 and (aT1 )Tz =a"1"2 |

T2

a“ " -a‘“=a

20. a) Show that the inclusion relation is a partial ordering relation on sets (but
not a linear ordering!).

b) Let A, B, and C be sets such that A C C, B C C, A\ B # @, and B\ A # @.
We introduce a partial ordering into this triple of sets as in a). Exhibit the maximal
and minimal elements of the set {A, B,C}. (Pay attention to the non-uniqueness!)

21. a) Show that, just like the set Q of rational numbers, the set Q(1/n) of numbers
of the form a + by/n, where a,b € Q and n is a fixed natural number that is not the
square of any integer, is an ordered set satisfying the principle of Archimedes but
not the axiom of completeness.

b) Determine which axioms for the real numbers do not hold for Q(y/n) if the
standard arithmetic operations are retained in Q(y/n) but order is defined by the
rule (a + by/n < a' + b/ /7)) = ((b <¥)V ((b =b)A(@a< a'))). Will Q(/7) now
satisfy the principle of Archimedes?

c) Order the set P[z] of polynomials with rational or real coefficients by speci-
fying that

Po(r)=ao+aiz+---+anz™ =0, if am>0.

d) Show that the set Q(z) of rational fractions

ao+ a1z + -+ amz™
bo+biz+ -+ bz

Rm,n =

with coefficients in Q or R becomes an ordered field, but not an Archimedean
ordered field, when the order relation Rm,» > 0 is defined to mean amb, > 0
and the usual arithmetic operations are introduced. This means that the principle
of Archimedes cannot be deduced from the other axioms for R without using the
axiom of completeness.
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22, Let n € N and n > 1. In the set E, = {0,1,...,n — 1} we define the sum and
product of two elements as the remainders when the usual sum and product in R
are divided by n. With these operations defined on it, the set E, is denoted Zr,.

a) Show that if n is not a prime number, then there are nonzero numbers m, k
in Z, such that m-k = 0. (Such numbers are called zero divisors.) This means that
in Z, the equation a - b = c- b does not imply that a = ¢, even when b # 0.

b) Show that if p is prime, then there are no zero divisors in Z, and Z, is a
field.

c) Show that, no matter what the prime p, Z, cannot be ordered in a way
consistent with the arithmetic operations on it.

23. Show that if R and R’ are two models of the set of real numbers and f : R — R’

is a mapping such that f(z + y) = f(z) + f(y) and f(z-y) = f(z) - f(y) for any
z,y € R, then

a) f(0) =0';

b) f(1) = 1" if f(z) # 0/, which we shall henceforth assume;

c) f(m) = m' where m € Z and m’ € Z/, and the mapping f : Z — Z' is
injective and preserves the order. )

d) f(%) = ’:—,/, where m,n € Z, n # 0, m',n’ € Z', n' # 0, f(m) = m/,
f(n) =n'. Thus f:Q — Q' is a bijection that preserves order.

e) f: R — R’ is a bijective mapping that preserves order.
24. On the basis of the preceding exercise and the axiom of completeness, show
that the axiom system for the set of real numbers determines it completely up to an
isomorphism (method of realizing it), that is, if R and R’ are two sets satisfying these

axioms, then there exists a one-to-one correspondence f : R — R’ that preserves the
arithmetic operations and the order: f(z +y) = f(z) + f(y), f(z-y) = f(z) - f(v),

and (2 <) & (f(2) < ).

25. A number z is represented on a computer as
*
O T
n=1

k
where p is the order of z and M = }° %2 is the mantissa of the number z

=1
t<Mm<). "
Now a computer works only with a certain range of numbers: for ¢ = 2 usually
|p| < 64, and k = 35. Evalute this range in the decimal system.

26. a) Write out the (6 x 6) multiplication table for multiplication in base 6.

b) Using the result of a), multiply “columnwise” in the base-6 system

(532)6
X
(145)6

and check your work by repeating the computation in the decimal system.
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c¢) Perform the “long” division

(1301)s |(25)s

and check your work by repeating the computation in the decimal system.

d) Perform the “columnwise” addition

(4052)¢
+
(3125)s

27. Write (100)10 in the binary and ternary systems.

28. a) Show that along with the unique representation of an integer as
(@n@n-1...a0)3,

where a; € {0,1,2}, it can also be written as

(ﬁnﬁn—l oo B0)3 ’

where 8 € {-1,0,1}.

b) What is the largest number of coins from which one can detect a counterfeit
in three weighings with a pan balance, if it is known in advance only that the
counterfeit coin differs in weight from the other coins?

29. What is the smallest number of questions to be answered “yes” or “no” that
one must pose in order to be sure of determining a 7-digit telephone number?

30. a) How many different numbers can one define using 20 decimal digits (for
example, two ranks with 10 possible digits in each)? Answer the same question for
the binary system. Which system does a comparison of the results favor in terms
of efficiency?

b) Evaluate the number of different numbers one can write, having at one’s
disposal n digits of a g-ary system. (Answer: ¢"/9.)

¢) Draw the graph of the function f(z) = ™/® over the set of natural-number
values of the argument and compare the efficiency of the different systems of com-
putation.

2.3 Basic Lemmas Connected with the Completeness
of the Real Numbers

In this section we shall establish some simple useful principles, each of which
could have been used as the axiom of completeness in our construction of the
real numbers. !0

We have called these principles basic lemmas in view of their extensive
application in the proofs of a wide variety of theorems in analysis.

10 See Problem 4 at the end of this section.
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2.3.1 The Nested Interval Lemma (Cauchy—Cantor Principle)

Definition 1. A function f : N — X of a natural-number argument is called
a sequence or, more fully, a sequence of elements of X.

The value f(n) of the function f corresponding to the number n € N is
often denoted z,, and called the nth term of the sequence.

Definition 2. Let X3, Xs,...,X,,... be a sequence of sets. If X1 D X3 D
-«» D X, D -, that is X,, D X,4; for all n € N, we say the sequence is
nested.

Lemma. (Cauchy—Cantor). For any nested sequence Iy DI D --- DI, D ---
of closed intervals, there ezists a point ¢ € R belonging to all of these intervals.

If in addition it is known that for any € > 0 there is an interval Iy
whose length |Ii| is less than €, then c is the unique point common to all the
intervals.

Proof. We begin by remarking that for any two closed intervals I, = [am, bm]
and I, = [an, by] of the sequence we have a,, < b,. For otherwise we would
have a, < b, < an, < b, that is, the intervals I,,, and I, would be mutually
disjoint, while one of them (the one with the larger index) is contained in the
other.

Thus the numerical sets A = {a,|m € N} and B = {b,|n € N} satisfy
the hypotheses of the axiom of completeness, by virtue of which there is a
number ¢ € R such that a,, < ¢ < b, for all a,,, € A and all b, € B. In
particular, a, < ¢ < b, for all n € N. But that means that the point ¢
belongs to all the intervals I,,.

Now let ¢; and ¢z be two points having this property. If they are different,
say ¢; < c¢g, then for any n € N we have a, < ¢; < ¢3 < b,, and therefore
0 < ¢cg—c1 < b, —ag, so that the length of an interval in the sequence cannot
be less than ¢y — ¢;. Hence if there are intervals of arbitrarily small length in

“the sequence, their common point is unique. 0O

2.3.2 The Finite Covering Lemma (Borel-Lebesgue Principle,
or Heine-Borel Theorem)

Definition 3. A system S = {X} of sets X is said to cover a set Y if

Y ¢ U X, (that is, if every element y € Y belongs to at least one of the
XeSs
sets X in the system S).

A subset of a set S = {X} that is a system of sets will be called a
subsystem of S. Thus a subsystem of a system of sets is itself a system of sets
of the same type.
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Lemma. (Borel-Lebesgue).!! Every system of open intervals covering a
closed interval contains a finite subsystem that covers the closed interval.

Proof. Let S = {U} be a system of open intervals U that cover the closed
interval [a,b] = I;. If the interval I; could not be covered by a finite set of
intervals of the system S, then, dividing I; into two halves, we would find
that at least one of the two halves, which we denote by I, does not admit
a finite covering. We now repeat this procedure with the interval I5, and so
on.

In this way a nested sequence I; D Iy D --- D I, D -- - of closed intervals
arises, none of which admit a covering by a finite subsystem of S. Since
the length of the interval I, is |I,| = |I1| - 27 ™, the sequence {I,,} contains
intervals of arbitrarily small length (see the lemma in Paragraph ¢ of Subsect.
2.2.4). But the nested interval theorem implies that there exists a point ¢
belonging to all of the intervals I,,, n € N. Since ¢ € I; = [a,b] there exists
an open interval Jo, S[= U € S containing ¢, that is, @ < ¢ < 3. Let ¢ =
min{c—a, 3—c}. In the sequence just constructed, we find an interval I, such
that |I,,| < €. Since ¢ € I, and |I,| < €, we conclude that I,, C U =], 8].
But this contradicts the fact that the interval I,, cannot be covered by a finite
set of intervals from the system. O

2.3.3 The Limit Point Lemma (Bolzano—Weierstrass Principle)

We recall that we have defined a neighborhood of a point z € R to be an open
interval containing the point and the §-neighborhood about x to be the open
interval |z — 6,z + 4[.

Definition 4. A point p € R is a limit point of the set X C R if every
neighborhood of the point contains an infinite subset of X.

This condition is obviously equivalent to the assertion that every neigh-
borhood of p contains at least one point of X different from p itself. (Verify
this!)

We now give some examples.

IfX = {% eR|ne N}, the only limit point of X is the point 0 € R.

For an open interval ]a, b every point of the closed interval [a, ] is a limit
point, and there are no others.

For the set Q of rational numbers every point of R is a limit point; for, as
we know, every open interval of the real numbers contains rational numbers.

11 £, Borel (1871-1956) and H. Lebesgue (1875-1941) — well-known French mathe-
maticians who worked in the theory of functions.



2.3 Basic Lemmas on Completeness 73

Lemma. (Bolzano-Weierstrass).!? Every bounded infinite set of real numbers
has at least one limit point.

Proof. Let X be the given subset of R. It follows from the definition of bound-
edness that X is contained in some closed interval I C R. We shall show that
at least one point of I is a limit point of X.

If such were not the case, then each point z € I would have a neighbor-
hood U(z) containing either no points of X or at most a finite number. The
totality of such neighborhoods {U(z)} constructed for the points z € I forms
a covering of I by open intervals U(z). By the finite covering lemma we can
extract a system U(z1),...,U(zy) of open intervals that cover I. But, since
X C I, this same system also covers X. However, there are only finitely many
points of X in U(z;), and hence only finitely many in their union. That is,
X is a finite set. This contradiction completes the proof. O

2.3.4 Problems and Exercises

1. Show that

a) if I is any system of nested closed intervals, then
sup{a € R|[a,b] € I} =a<f= inf{b € R|[a,b] € I}

and
o, 8] = m [a, 0] ;
[a,b]leT
b) if I is a system of nested open intervals ]a, b] the intersection [\ ]a,b[ may
la,blel
happen to be empty.

Hint: ]an,bn[=]0,%[.

2. Show that

a) from a system of closed intervals covering a closed interval it is not always
possible to choose a finite subsystem covering the interval;

b) from a system of open intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval;

¢) from a system of closed intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval.

3. Show that if we take only the set Q of rational numbers instead of the complete
set R of real numbers, taking a closed interval, open interval, and neighborhood of
a point 7 € Q to mean respectively the corresponding subsets of Q, then none of
the three lemmas proved above remains true.

12 B, Bolzano (1781-1848) — Czech mathematician and philosopher.
K. Weierstrass (1815-1897) — German mathematician who devoted a great deal
of attention to the logical foundations of mathematical analysis.
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4. Show that we obtain an axiom system equivalent to the one already given if we
take as the axiom of completeness

a) the Bolzano—Weierstrass principle

or

b) the Borel-Lebesgue principle (Heine-Borel theorem).

Hint: The principle of Archimedes and the axiom of completeness in the earlier
form both follow from a).

¢) Replacing the axiom of completeness by the Cauchy—Cantor principle leads
to a system of axioms that becomes equivalent to the original system if we also
postulate the principle of Archimedes. (See Problem 21 in Subsect. 2.2.2.)

2.4 Countable and Uncountable Sets

We now make a small addition to the information about sets that was pro-
vided in Chap. 1. This addition will be useful below.

2.4.1 Countable Sets

Definition 1. A set X is countable if it is equipollent with the set N of
natural numbers, that is, card X = card N.

Proposition. a) An infinite subset of a countable set is countable.
b) The union of the sets of a finite or countable system of countable sets
is a countable set.

Proof. a) It suffices to verify that every infinite subset E of N is equipollent
with N. We construct the needed bijective mapping f : N — E as follows.
There is a minimal element of F; := F, which we assign to the number 1 € N
and denote e; € E. The set F is infinite, and therefore Ey := E; \ e; is
nonempty. We assign the minimal element of E5 to the number 2 and call it
e2 € Ey. We then consider E3 := E \ {e1, ez}, and so forth. Since E is an
infinite set, this construction cannot terminate at any finite step with index
n € N. As follows from the principle of induction, we assign in this way a
certain number e, € F to each n € N. The mapping f : N — E is obviously
injective.

It remains to verify that it is surjective, that is, f(N) = E. Let e € E.
The set {n € N|n < e} is finite, and hence the subset of it {n € E|n < e}
is also finite. Let k be the number of elements in the latter set. Then by
construction e = eg.

b) If X;,...,Xn,... is a countable system of sets and each set X,, =
{zl,,...,z7,...} is itself countable, then since the cardinality of the set X

U Xn, which consists of the elements z?, where m,n € N, is not less than
neN
the cardinality of each of the sets X,,, it follows that X is an infinite set.
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The element z7, € X,, can be identified with the pair (m,n) of natural
numbers that defines it. Then the cardinality of X cannot be greater than the
cardinality of the set of all such odered pairs. But the mapping f : NxN — N
given by the formula (m,n) — %;"JF"H) + m, as one can easily verify,
is bijective. (It has a visualizable meaning: we are enumerating the points of
the plane with coordinates (m,n) by successively passing from points of one
diagonal on which m + n is constant to the points of the next such diagonal,
where the sum is one larger.)

Thus the set of ordered pairs (m,n) of natural numbers is countable. But
then card X < cardN, and since X is an infinite set we conclude on the basis’
of a) that card X = cardN. O

It follows from the proposition just proved that any subset of a countable
set is either finite or countable. If it is known that a set is either finite
or countable, we say it is at most countable. (An equivalent expression is
card X < cardN.)

We can now assert, in particular, that the union of an at most countable
family of at most countable sets is at most countable.

Corollaries 1) cardZ = card N.

2) card N? = card N.
(This result means that the direct product of countable sets is countable.)

3) card Q = card N, that is, the set of rational numbers is countable.

Proof. A rational number 7* is defined by an ordered pair (m,n) of integers.
Two pairs (m,n) and (m’,n’) define the same rational number if and only if
they are proportional. Thus, choosing as the unique pair representing each
rational number the pair (m,n) with the smallest possible positive integer
denominator n € N, we find that the set Q is equipollent to some infinite
subset of the set Z x Z. But card Z? = card N and hence card Q = card N. 0O

4) The set of algebraic numbers is countable.

Proof. We remark first of all that the equality Q x Q = card N implies, by
induction, that card Q¢ = card N for every k € N.

An element r € QF is an ordered set (r1,...,7s) of k rational numbers.

An algebraic equation of degree k with rational coefficients can be written
in the reduced form z* 4+ r12%¥~1 + ... 4+ r; = 0, where the leading coefficient
is 1. Thus there are as many different algebraic equations of degree k as there
are different ordered sets (71, . . .,7x) of rational numbers, that is, a countable
set.

The algebraic equations with rational coefficients (of arbitrary degree)
also form a countable set, being a countable union (over degrees) of countable
sets. Each such equation has only a finite number of roots. Hence the set of
algebraic numbers is at most countable. But it is infinite, and hence countable.
O



76 2 The Real Numbers

2.4.2 The Cardinality of the Continuum

Definition 2. The set R of real numbers is also called the number contin-
uwum,'® and its cardinality the cardinality of the continuum.

Theorem.(Cantor). card N < card R.

This theorem asserts that the infinite set R has cardinality greater than
that of the infinite set N.

Proof. We shall show that even the closed interval [0, 1] is an uncountable
set.

Assume that it is countable, that is, can be written as a sequence
Z1,L2,...,Zn,... . Take the point z; and on the interval [0,1] = I fix a
closed interval of positive length I; not containing the point z;. In the in-
terval I; construct an interval I not containing x,. If the interval I,, has
been constructed, then, since |I,,| > 0, we construct in it an interval Ip,41
so that z,y1 ¢ I,1 and |I,4+1]| > 0. By the nested set lemma, there is a
point ¢ belonging to all of the intervals Iy, I1, ..., I,,... . But this point of
the closed interval Iy = [0,1] by construction cannot be any point of the
sequence Iy, To2,...,Tn,.... 0O

Corollaries 1) Q # R, and so irrational numbers exist.

2) There ezist transcendental numbers, since the set of algebraic numbers is
countable.

(After solving Exercise 3 below, the reader will no doubt wish to reinter-
pret this last proposition, stating it as follows: Algebraic numbers are occa-
sionally encountered among the real numbers.)

At the very dawn of set theory the question arose whether there exist
sets of cardinality between countable sets and sets having cardinality of the
continuum, and the conjecture was made, known as the continuum hypothesis,
that there are no intermediate cardinalities.

The question turned out to involve the deepest parts of the foundations of
mathematics. It was definitively answered in 1963 by the contemporary Amer-
ican mathematician P. Cohen. Cohen proved that the continuum hypothesis
is undecidable by showing that neither the hypothesis nor its negation con-
tradicts the standard axiom system of set theory, so that the continuum
hypothesis can be neither proved nor disproved within that axiom system.
This situation is very similar to the way in which Euclid’s fifth postulate on
parallel lines is independent of the other axioms of geometry.

2.4.3 Problems and Exercises

1. Show that the set of real numbers has the same cardinality as the points of the
interval | — 1, 1].

13 From the Latin continuum, meaning continuous, or solid.
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2. Give an explicit one-to-one correspondence between
a) the points of two open intervals;
b) the points of two closed intervals;
c¢) the points of a closed interval and the points of an open interval;
d) the points of the closed interval [0, 1] and the set R.

3. Show that
a) every infinite set contains a countable subset;

b) the set of even integers has the same cardinality as the set of all natural
numbers.

c¢) the union of an infinite set and an at most countable set has the same
cardinality as the original infinite set;

d) the set of irrational numbers has the cardinality of the continuum;

e) the set of transcendental numbers has the cardinality of the continuum.

4. Show that

a) the set of increasing sequences of natural numbers {n1 < nz < ---} has the
same cardinality as the set of fractions of the form 0.c1az. . .;

b) the set of all subsets of a countable set has cardinality of the continuum.

5. Show that

a) the set P(X) of subsets of a set X has the same cardinality as the set of all
functions on X with values 0, 1, that is, the set of mappings f : X — {0,1};

b) for a finite set X of n elements, card P(X) = 27,

¢) taking account of the results of Exercises 4b) and 5a), one can write
card P(X) = 2°#X and, in particular, card P(N) = 2°*"N = card R;

d) for any set X
card X < 24X in particular, n < 2" for any n € N .
Hint: See Cantor’s theorem in Subsect. 1.4.1.
‘6. Let X1,...,X, be a finite system of finite sets. Show that

card ( 0 Xi) = anrd X —
i1

=1
= ) card(Xiy NXiy)+ D card (Xiy N Xiy N Xig) —
11 <ig 11<i2<1i3
— ek (=)™ card (X1 NN X)),

the summation extending over all sets of indices from 1 to m satisfying the inequal-
ities under the summation signs.
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7. On the closed interval [0,1] C R describe the sets of numbers z € [0, 1] whose
ternary representation z = 0.a1azas3. .., a; € {0,1,2}, has the property:

a) a1 75 1;
b) (a1 # 1) A (a2 # 1);
c) Vi € N(a; # 1) (the Cantor set).

8. (Continuation of Exercise 7.) Show that

a) the set of numbers z € [0, 1] whose ternary representation does not contain
1 has the same cardinality as the set of all numbers whose binary representation
has the form 0.8:16:. . .;

b) the Cantor set has the same cardinality as the closed interval [0, 1].
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In discussing the various aspects of the concept of a real number we remarked
in particular that in measuring real physical quantities we obtain sequences
of approximate values with which one must then work.

Such a state of affairs immediately raises at least the following three
questions:

1) What relation does the sequence of approximations so obtained have to
the quantity being measured? We have in mind the mathematical aspect of
the question, that is, we wish to obtain an exact expression of what is meant
in general by the expression “sequence of approximate values” and the extent
to which such a sequence describes the value of the quantity. Is the description
unambiguous, or can the same sequence correspond to different values of the
measured quantity?

2) How are operations on the approximate values connected with the
same operations on the exact values, and how can we characterize the opera-
tions that can legitimately be carried out by replacing the exact values with
approximate ones?

3) How can one determine from a sequence of numbers whether it can be a
sequence of arbitrarily precise approximations of the values of some quantity?

The answer to these and related questions is provided by the concept of
the limit of a function, one of the fundamental concepts of analysis.

We begin our discussion of the theory of limits by considering the limit

.of a function of a natural-number argument (a sequence), in view of the
fundamental role played by these functions, as already explained, and also
because all the basic facts of the theory of limits can actually be clearly seen
in this simplest situation.

3.1 The Limit of a Sequence

3.1.1 Definitions and Examples

We recall the following definition.

Definition 1. A function f : N —+ X whose domain of definition is the set
of natural numbers is called a sequence.
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The values f(n) of the function f are called the terms of the sequence. It
is customary to denote them by a symbol for an element of the set into which
the mapping goes, endowing each symbol with the corresponding index of the
argument. Thus, x,, := f(n). In this connection the sequence itself is denoted
{zn}, and also written as z1,Z2,...,Tn,.... It is called a sequence in X or a
sequence of elements of X.

The element z, is called the nth term of the sequence.

Throughout the next few sections we shall be considering only sequences
f N = R of real numbers.

Definition 2. A number A € R is called the limit of the numerical sequence
{z,} if for every neighborhood V(A) of A there exists an index N (depending
on V(A)) such that all terms of the sequence having index larger than N
belong to the neighborhood V(4).

We shall give an expression in formal logic for this definition below, but
we first point out another common formulation of the definition of the limit
of a sequence.

A number A € R is called the limit of the sequence {x,} if for every € > 0
there exists an index N such that |z, — A| < e for all n > N.

The equivalence of these two statements is easy to verify (verify it!) if we
remark that any neighborhood V(A4) of A contains some e-neighborhood of
the point A.

The second formulation of the definition of a limit means that no matter
what precision € > 0 we have prescribed, there exists an index N such that
the absolute error in approximating the number A by terms of the sequence
{zn} is less than € as soon as n > N.

‘We now write these formulations of the definition of a limit in the language

of symbolic logic, agreeing that the expression “ lim z, = A” is to mean that
n—o0

A is the limit of the sequence {z,}. Thus

(nll)rr;o zn = A) :=VV(A) 3N e NVn > N (z, € V(4))

and respectively

(lim z, =A):=Ve >03IN e NVn> N (|z, — A| <e¢) .

n—o0o

Definition 3. If hm z, = A, we say that the sequence {z,} converges to

A or tends to A and erte T, — A asn — oo.
A sequence having a limit is said to be convergent. A sequence that does
not have a limit is said to be divergent.
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Let us consider some examples.

T NP 1 _1 _ 171
Ezample 1. lim & =0, since |2 —0|=1<ewhenn>N=[1].

Example 2. nh_)ngo"—;'li =1,since |2 —1| =1 <eifn > [1].

Example 3. nh_)ngo (1 + %) = 1, since ‘(1 + (_;)n) - 1‘ = % < € when
n>[2]

Ezample 4. nh_)n;o sinn — 0, since |22 — 0| < L <eforn > [1].

Ezample 5. nh_)n;o qin =0if |g| > 1.

Let us verify this last assertion using the definition of the limit. As was
shown in Paragraph c of Subsect. 2.2.4, for every € > 0 there exists NeN

such that v < €. Since |g| > 1, we shall have ‘q 0' <R < WN < ¢ for
n > N, and the condition in the definition of the limit is satisfied.

Example 6. The sequence 1,2, 3,4 %, 6, .l,, ... whose nth term is z, = n(-D",
n € N, is divergent.

Proof. Indeed, if A were the limit of this sequence, then, as follows from
the definition of limit, any neighborhood of A would contain all but a finite
number of terms of the sequence.

A number A # 0 cannot be the limit of this sequence; forif e = % > 0,

all the terms of the sequence of the form =~ 2k 1 for which 3 k T < '%' lie outside
the e-neighborhood of A.

But the number 0 also cannot be the limit, since, for example, there are
infinitely many terms of the sequence lying outside the 1-neighborhood of 0.
O

Example 7. One can verify similarly that the sequence 1,—1,+1,—1,..., for
which z, = (—1)", has no limit.

3.1.2 Properties of the Limit of a Sequence

a. General Properties We assign to this group the properties possessed
not only by numerical sequences, but by other kinds of sequences as well, as
we shall see below, although at present we shall study these properties only
for numerical sequences.

A sequence assuming only one value will be called a constant sequence.

! We recall that [z] is the integer part of the number . (See Corollaries 7° and
10° of Sect. 2.2.)
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Definition 4. If there exists a number A and an index N such that z, = A
for all n > N, the sequence {z,} will be called ultimately constant.

Definition 5. A sequence {z,} is bounded if there exists M such that
|zn| < M for all n € N.

Theorem 1. a) An ultimately constant sequence converges.

b) Any neighborhood of the limit of a sequence contains all but a finite
number of terms of the sequence.

c) A convergent sequence cannot have two different limits.

d) A convergent sequence is bounded.

Proof. a) If z, = A for n > N, then for any neighborhood V(A) of A we
have z,, € V(A) when n > N, that is, lim z, = A.
n—oo
b) This assertion follows immediately from the definition of a convergent

sequence.
¢) This is the most important part of the theorem. Let lim z, = A;

n—oo
and lim z, = As. If A; # Ay, we fix nonintersecting neighborhoods V' (A;)

—

n—ro0
and V(A3) of A; and As. These neighborhoods might be, for example, the
é-neighborhoods of A; and As for § < %|A1 — As|. By definition of limit we
find indices N; and Ny such that z,, € V(A4;) for alln > N; and z, € V(4z2)
for all n > Ny. But then for N = max{Nj, N2} we have z,, € V(A1)NV(42).
But this is impossible, since V(A4;) NV (42) = 2.

d) Let nll)n;o Tn, = A. Setting € = 1 in the definition of a limit, we find N
such that |z, — A| < 1 for all n > N. Then for n > N we have |z,| < |A| +1.
If we now take M > max{|zi1],...,|zn|,|A| + 1} we find that |z,| < M for
alneN. O

b. Passage to the Limit and the Arithmetic Operations

Definition 6. If {z,} and {y,} are two numerical sequences, their sum,
product, and quotient (in accordance with the general definition of sum, prod-
uct, and quotient of functions) are the sequences

{@ntu)l @) {(T2))

Yn
The quotient, of course, is defined only when y, # 0 for all n € N.

Theorem 2. Let {z,} and {yn} be numerical sequences. If ILm zn = A and
n—00
lim y, = B, then
n—o0
a) nh_{rgo(xn +yn) = A+ B;
b) lim (z, -yn) = A- B;
n—00

¢) lim Z= =4 provided y, #0 (n=1,2,...,) and B #0.

n—oo Yn
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Proof. As an exercise we use the estimates for the absolute errors that arise

under arithmetic operations with approximate values of quantities, which we
already know (Subsect. 2.2.4).
Set |A — z,| = A(zy), |B — yn| = A(yn)- Then for case a) we have

|(A+ B) = (#n +yn)| < Azn) + A(yn) -

Suppose € > 0 is given. Since hm z, = A, there exists N’ such that
A(zy,) < €/2 for all n > N'. Slmllarly, since hm yn = B, there exists N”

such that A(y,) < /2 for all n > N”. Then for n > max{N’, N} we shall
have
((A+B) — (zn+yn)| <€,

which, by definition of limit, proves assertion a).
b) We know that

|(A- B) = (@n - yn)| < 20| A(yn) + lyn|A(zn) + A(zn) - Ayn) -

Given € > 0 find numbers N’ and N such that

Vn > N’ (A(xn)<mi“{ |B|+1)}>

Vn > N” (A(yn) < min{ |A| +1 }>

Then for n > N = max{N’, N"} we shall have
lzal <Al + A(zn) <|A[+1,
lyn| <|Bl + A(yn) < |B|+1,
€ € €
. i 24 mi -
Azy) - Ayn) < mln{l, 3} mln{l, 3} <3
Hence for n > N we have

2l Ayn) < (14] +1) - o

SV EDR
e

3(0B[+1) ~

lyn|A(zn) < (IBI+1) -

Wlm Wlm wlm

and therefore |AB — z,y,| < € for n > N.
c) We use the estimate

|wn|A(yn) + |yn|A(xn)| . 1

‘B Yn

A(yn)
|yn| :

where §(yn) =
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For a given € > 0 we find numbers N’ and N” such that

Vn > N’ (A(xn) < min {1 elBl }) )

2
Vn > N” (A(yn) < min { 18] E(jT|B+_1)}> .

Then for n > max{N’, N"} we shall have

|zn| < |A| + A(z,) < |A]+1,

B
vl > 1Bl - Aw) > 18- 21 > B,
12
lynl ~1Bl’
A(yn) _|B|/4 _ 1
0<é ==,
) =1 < B2 =2
1
1_6(yn)>§a
and therefore
e-B? €
A Al+1 —_— = -
lonl - 7 Alun) < (141 +1)- 32 6(A[+1) 4’
2 ¢B|] e
—|A(z — =
PR
1
0< ——< 2,
l_é(yn)
and consequently
A z,
— ——|<ewhenn>N. 0O
B yn

Remark. The statement of the theorem admits another, less constructive
method of proof that is probably known to the reader from the high-school
course in the rudiments of analysis. We shall mention this method when we
discuss the limit of an arbitrary function. But here, when considering the
limit of a sequence, we wished to call attention to the way in which bounds
on the errors in the result of an arithmetic operations can be used to set
permissible bounds on the errors in the values of quantities on which an
operation is carried out.

c. Passage to the Limit and Inequalities

Theorem 3. a) Let {z,} and {yn} be two convergent sequences with
lim z, = A and hm yn = B. If A < B, then there exists an index N € N

n—o0o

such that , < yn for alln > N.
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b) Suppose the sequences {z,}, {yn}, and {z,} are such that z, < yn, < 2,
for alln > N € N. If the sequences {z,} and {z,} both converge to the same
limit, then the sequence {yn} also converges to that limit.

Proof. a) Choose a number C such that A < C < B. By definition of limit,
we can find numbers N’ and N” such that |z, — A| < C — A for all n > N’
and |y, — B| < B—C for all n > N”. Then for n > N = max{N’,N"} we
shall have 2, < A+ C—-A=C=B—(B-C) < yn.

b) Suppose nan;o Tp = nh_)rr;o zn = A. Given € > 0 choose N’ and N” such
that A—e <z, foralln > N’ and 2z, < A+ ¢ for all n > N”. Then for
n > N = max{N’, N"} we shall have A — ¢ < z, <y, < 2z, < A+ ¢, which
says |y, — A| <e¢, that is A = nh_)rr;o Yn. 0O

Corollary. Suppose lim z, = A and lim y, = B. If there exists N such
n—oo n—oo

that for all n > N we have
a) Tpn > Yn, then A > B
b) Zp, > yn, then A> B ;
¢) zn, > B, then A> B
d)z, > B, then A> B.

Proof. Arguing by contradiction, we obtain the first two assertions immedi-
ately from part a) of the theorem. The third and fourth assertions are the
special cases of the first two obtained when y, = B. O

It is worth noting that strict inequality may become equality in the limit.
For example % >0 for all n € N, yet lim % = 0.
n—oo

3.1.3 Questions Involving the Existence of the Limit of a Sequence

a. The Cauchy Criterion

" Definition 7. A sequence {z,} is called a fundamental or Cauchy sequence?

if for any € > 0 there exists an index N € N such that |z, —z,| < € whenever
n> N and m > N.

Theorem 4. (Cauchy’s convergence criterion). A numerical sequence con-
verges if and only if it is a Cauchy sequence.

2 Bolzano introduced Cauchy sequences in an attempt to prove, without having
at his disposal a precise concept of a real number, that a fundamental sequence
converges. Cauchy gave a proof, taking the nested interval principle, which was
later justified by Cantor, as obvious.
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Proof. Suppose le T, = A. Given € > 0, we find an index N such that
n o0

|zn — Al < § for n > N. Then if m > N and n > N, we have |z, — z,| <
| — Al + |2z, — A| < §+ § = €, and we have thus verified that the sequence
is a Cauchy sequence.

Now let {zx} be a fundamental sequence. Given ¢ > 0, we find an index
N such that |2, — 2| < § when m > N and k > N. Fixing m = N, we find
that for any £k > N

:L'N—§<.’I:k<:r_7v+§, (3.1)

but since only a finite number of terms of the sequence have indices not larger
than N, we have shown that a fundamental sequence is bounded.

For n € N we now set a,, := inf xx, and b, := sup zx.
k=>n k>n

It is clear from these definitions that a, < any1 < bpy1 < by, (since the
greatest lower bound does not decrease and the least upper bound does not
increase when we pass to a smaller set). By the nested interval principle,
there is a point A common to all of the closed intervals [an, by].

Since

an < A<b,

for any n € N and

an = Inf 2 < 2 < supzp = b
k2n k>n

for k > n, it follows that
|A -2k < b, —an . (3.2)
But it follows from Eq. (3.1) that

15 €
sy— =< infzr=a, <b,=supzr <N+ =
N 3_k2nk n > Un kz};lc_ N 3

for n > N, and therefore
bn_anfg?)f<€ (3.3)
for n > m. Comparing Egs. (3.2) and (3.3), we find that
|A—zi| <€,

for any k > N, and we have proved that klim r,=A. O
—>00

FEzample 8. The sequence (—1)" (n = 1,2,...) has no limit, since it is not
a Cauchy sequence. Even though this fact is obvious, we shall give a formal
verification. The negation of the statement that {z,} is a Cauchy sequence
is the following:

Je>0VNeNIn>N3Im>N (|zm —za| > ),
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that is, there exists € > 0 such that for any N € N two numbers n, m larger
than N exist for which |z, — z,| > €.

In our case it suffices to set € = 1. Then for any N € N we shall have
|.’BN+1 —.’DN_|.2| = |1 — (—1)| =2>1=¢.

Ezxample 9. Let
=0, 22=0, z3=0002,...,2,=0.0102...Qp,...

be a sequence of finite binary fractions in which each successive fraction is
obtained by adjoining a 0 or a 1 to its predecessor. We shall show that such a
sequence always converges. Let m > n. Let us estimate the difference z,, —zy:

Qn+1 Qm
|$m—1’n|= #.}_ +2_m <
1\n+1 1\ym+1
<L+...+i_(§) _(5) <i
- 9n+l 2m_ 1_% on

Thus, given € > 0, if we choose N so that 2%, < g, we obtain the estimate
T — Tn| < 25 < 54 < € for all m > n > N, which proves that the sequence
i p) 2
{z,} is a Cauchy sequence.

Ezample 10. Consider the sequence {z,}, where

1 1
Tn =14+t =
2 n
Since
| ZTn| = 1 + -4 ! >n 1 _1
L n+n on 2’

for all n € N, the Cauchy criterion implies immediately that this sequence
does not have a limit.

b. A Criterion for the Existence of the Limit
of a Monotonic Sequence

Definition 8. A sequence {z,} is increasing if x, < zp41 for all n € N,
nondecreasing if x, < xp41 for all n € N, nonincreasing if x, > x,41 for all
n € N, and decreasing if x,, > x,41 for all n € N. Sequences of these four
types are called monotonic sequences.

Definition 9. A sequence {z,} is bounded above if there exists a number M
such that z, < M for all n € N.

Theorem 5. (Weierstrass). In order for a nondecreasing sequence to have a
limit it is necessary and sufficient that it be bounded above.
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Proof. The fact that any convergent sequence is bounded was proved above
under general properties of the limit of a sequence. For that reason only the
sufficiency assertion is of interest.

By hypothesis the set of values of the sequence {z,} is bounded above

and hence has a least upper bound s = sup z,,.
neN
By definition of the least upper bound, for every € > 0 there exists an

element zy € {z,} such that s — e < zx < s. Since the sequence {z,} is
nondecreasing, we now find that s — ¢ < zy < z, < s for all n > N. That
is, |s — zn| = s — zn, < €. Thus we have proved that lim z, =s. O

n—oo

Of course an analogous theorem can be stated and proved for a nonin-
creasing sequence that is bounded below. In this case le Ty = irelf\I Tn.
n—oo n

Remark. The boundedness from above (resp. below) of a nondecreasing
(resp. nonincreasing) sequence is obviously equivalent to the boundedness of
that sequence.

Let us consider some useful examples.

Ezxample 11. lim Z =0if ¢ > 1.
n—oo ¢

Proof. Indeed, if z,, = q%, then z,41 = "—“xn for n € N. Since hm ”n—"('ll =

. 1\1 _ 7: 1\ .1 1 _
nll)rr;o (1 + ;)E = nango (1+ n) nango ri 1. q =2 L <1, there ex1sts an index

N such that 21 < 1 for n > N. Thus we shall have Tpy1 < Tp forn > N,
so that the sequence will be monotonically decreasing from index N on. As
one can see from the definition of a limit, a finite set of terms of a sequence
has no effect the convergence of a sequence or its limit, so that it now suffices
to find the limit of the sequence zn4+1 > Ty42 > ... .

The terms of this sequence are positive, that is, the sequence is bounded
below. Therefore it has a limit.

n+1

Let z = le Zp. It now follows from the relation z,; = Tng Tn that
n oo

n+1 . n+1 1
T = hm ($n+1) = lim ( :vn> = lim —— - lim z, = -z,

from which we find (1 — %):v =0,andsoz=0. O

Corollary 1.
lim ¥/n=1.

n—o0
Proof. By what was just proved, for a given € > 0 there exists N € N such
that 1 <n < (1+¢)" foralln > N. Then forn > N weobtain 1 < {/n < 1+¢
and hence ILm Yn=1. O
n—00
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Corollary 2.
lim a =1 for any a > 0.
n—oo

Proof. Assume first that a > 1. For any € > 0 there exists N € N such that
1<a<(l+¢&)" foralln > N, and we then have 1 < /a < 1+ ¢ for all
n > N, which says le Ya=1.

n—00

For 0 <a <1, we have 1 < 1, and then

lim ¥/a = lim = =1.0

n—o00 n—oo ,/1

Ezample 12. lim 1 = 0; here ¢ is any real number, n € N, and n! :=
1-2-...-n

Proof. If ¢ = 0, the assertion is obvious. Further, since |9—| J7L|,—, it suffices
to prove the assertion for ¢ > 0. Reasoning as in Example 11, we remark that
Tntl = 5 +1 —L_z,. Since the set of natural numbers is not bounded above, there
exists an index N such that 0 < + < 1for alln > N. Then for n > N we
shall have z,4+1 < Zn, and since the terms of the sequence are positive, one

can now guarantee that the limit le T, = T exists. But then
n o0

— q — i B 1 — . —
T = hm Tpt1 = h—>n;on+1$"_nlgrolon+ nh_)rgloa:n—o z=0.0

c. The Number e

n

1
Ezample 13. Let us prove that the limit lim (1 + —) exists.

—
In this case the limit is a number der;loggd by &e letter e, after Euler.
This number is just as central to analysis as the number 1 to arithmetic or
7 to geometry. We shall revisit it many times for a wide variety of reasons.
We begin by verifying the following inequality, sometimes called Jakob
Bernoulli’s inequality:3

(l+a)*">1+naforneNand a> —1.

Proof. The assertion is true for n = 1. If it holds for n € N, then it must also
hold for n + 1, since we then have

A+a)"'=14+a)1+a)” > (1+a)(l+na)=
=1+(n+Da+na?>1+n+1a.

8 Jakob (James) Bernoulli (1654-1705) — Swiss mathematician, a member of the
famous Bernoulli family of scholars. He was one of the founders of the calculus
of variations and probability theory.
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By the principle of induction the assertion is true for all n € N.
Incidentally, the computation shows that strict inequality holds if o # 0
andn>1. 0O

We now show that the sequence y, = (1+ %)nﬂ is decreasing.

Proof. Let n > 2. Using Bernoulli’s inequality, we find that

Yn—-1 _ (1+ nil)n — n?" = ( + . )n ° >
= e = E T = 2_1) nri2
Yn (1_}_;) (n Hm n+4+1 n 1/ n+1
n n 1 n
> (1 —)—— (1 —) -1
—< +n2—1 n+1> +n n+1

)n+1

Since the terms of the sequence are positive, the limit lim (1 + %
n—o00

exists.
But we then have

1\7n 1\ n+1 1\ -1
lim (1 + —) lim (1 + —) (1 + —) -

1\n+1 1 1\ n+1
= Jlim (14 )7 - lim — = 1im (1+-)7 . O
n—00 n n—oo | 4+ - n—o00 n

Thus we make the following definition:

Definition 10.

e:= lim (1+;11-)n.

n—oo

d. Subsequences and Partial Limits of a Sequence

Definition 11. If z1,22,...,Z,,... iS a sequence and n; < ng < -+ <
ng < --- an increasing sequence of natural numbers, then the sequence
Ty Ty« - -3 Lny, - - - is called a subsequence of the sequence {z,}.

For example, the sequence 1, 3,5, ... of positive odd integers in their nat-
ural order is a subsequence of the sequence 1,2,3,.... But the sequence
3,1,5,7,9,... it not a subsequence of this sequence.

Lemma 1. (Bolzano-Weierstrass). Every bounded sequence of real numbers
contains a convergent subsequence.

Proof. Let E be the set of values of the bounded sequence {z,}. If F is
finite, there exists a point x € E and a sequence n; < ng < --- of indices
such that z,,, = z,, = --- = z. The subsequence {z,, } is constant and hence
converges.
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If E is infinite, then by the Bolzano—Weierstrass principle it has a limit
point z. Since z is a limit point of E, one can choose n; € N such that
|zn, — z| < 1. If ny € N have been chosen so that |z,, — z| < %, then,
because z is a limit point of E, there exists ng+1 € N such that ng < ng4q
and |, ., — | < kl?

Since klgrolo % = 0, the sequence z,,,Zn,,...,Zn,,... SO constructed con-
verges toz. O

Definition 12. We shall write z, — +o0o0 and say that the sequence {z,}
tends to positive infinity if for each number c there exists N € N such that
zn > cfor alln > N.

Let us write this and two analogous definitions in logical notation:

(xn & +0) :=Vce RIN NV > N (¢ < zp),
(xn &> —0) :=VceRINeNVn >N (z,<c),
(xn > 00) :=Vce RAN e NVn > N (c < |z,]) -

In the last two cases we say that the sequence {z,} tends to megative
infinity and tends to infinity respectively.

We remark that a sequence may be unbounded and yet not tend to posi-
tive infinity, negative infinity, or infinity. An example is z, = n(-D",

Sequences that tend to infinity will not be considered convergent.

It is easy to see that these definitions enable us to supplement Lemma 1,
stating it in a slightly different form.

Lemma 2. From each sequence of real numbers one can extract either a
convergent subsequence or a subsequence that tends to infinity.

Proof. The new case here occurs when the sequence {z,} is not bounded.
Then for each k € N we can choose nj, € Nsuch that |z,, | > k and ng < ng41.
We then obtain a subsequence {z,, } that tends to infinity. O

Let {zx} be an arbitrary sequence of real numbers. If it is bounded below,
one can consider the sequence i, = I§I>1f zr, (which we have already encoun-
>n

tered in proving the Cauchy convergence criterion). Since i, < i,4; for any

n € N, either the sequence {i,} has a finite limit lim in =1, OF iy — +00.

Definition 13. The number ! = ll)m ’:nf zi is called the inferior limit of
n o0

the sequence {z;} and denoted lim zj or hm mf k. If i, = +00, it is said
k—oo
that the inferior limit of the sequence equals posmve infinity, and we write

lim Zp = +00 or hm 1nf zp = +oo. If the original sequence {z} is not
bounded below, then we shall have i,, = mf xzr = —oo for all n. In that case

we say that the inferior limit of the sequence equals negative infinity and

write lim xp = —oo or llm 1nf T = —00.
k—o00
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Thus, taking account of all the possibilities just enumerated, we can now
write down briefly the definition of the inferior limit of a sequence {z}:

lim zg := lim inf x|
k—o00 n—)oo k>n

Similarly by considering the sequence s, = sup zx, we arrive at the defi-
k>n

nition of the superior limit of the sequence {z}:
Definition 14.

lim z := lim sup x|
k—o00 n—)oo k>n

We now give several examples:

Ezample 14. z, = (-1)k, ke N:

i - _ k_
kli)n:o Tp = nll_)ngo ggﬁl Tp = hm 1nf( 1)F = hm ( 1)=-1,
lim z; = lim supz, = hm sup(—1)F = hm 1=1.
k—o0 n—=00 p>p n—=00 k>np

Ezample 15. z, = kD" ke N:
lim V" = lim inf 4" = lim 0=0,

k— o0 n—oo k>n n—o00

im D" = lim sup&CY" = lim (+00) = +00 .

k—o0 n—00 >p n—oo

Ezxample 16. x, =k, ke N:

lim £ = lim inf k= lim n = +o0,

k—o00 n—oo k>n n—oo
lim k¥ = lim supk = lim (+oo) +00 .
k—o00 n—=00 f>p n—

Example 17. z) = —)— ,keN:

L ifn=2m+1
_lk _lk n 1
h_m( ) = lim inf(_) = lim =0,
k—00 n—o0 k>n n—o00 —n—+l,1fn—2m
1 .
k _1\k no if n=2m
lim ( ]:) = lim supﬂ= lim =0
k—oo n—=0 k>n n—00 #,1fn—2m+1

Example 18. xz = —k?, k€ N:

. _2= . . _2=_
(k) = Jig, BL(R) = meo
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Ezample 19. z, = (-1)*k, k € N:
lim (—-1)*k = hm 1nf( 1)*k = hm (—oo) —00,

k—o0
—_ k = — k = =
Jm (1% = Jim sup(=1)%% = lim (+00) = oo

To explain the origin of the terms “superior” and “inferior” limit of a
sequence, we make the following definition.

Definition 15. A number (or the symbol —oco or +00) is called a partial
limit of a sequence, if the sequence contains a subsequence converging to
that number.

Proposition 1. The inferior and superior limits of a bounded sequence are
respectively the smallest and largest partial limits of the sequence.*

Proof. Let us prove this, for example, for the inferior limit ¢ = lim xz.
k— o0
What we know about the sequence i, = ’gf x) is that it is nondecreasing
n

and that hm in = i € R. For the numbers n € N, using the definition of

the greatest lower bound we choose by induction numbers &, € N such that

in < Tk, < in+ L and k, < kn+1. Since lim i, = lim (zn + l) =1, we
" n n—00 n—o00 n

can assert, by properties of limits, that lim z; = ¢. We have thus proved
n—00

that i is a partial limit of the sequence {zy}. It is the smallest partial limit
since for every € > 0 there exists n € N such that i — ¢ < 4,, that is
i—8<in=gr>1ka§:ck for any k > n.

>n

The inequality i — € < z for £k > n means that no partial limit of the
sequence can be less than ¢ — €. But € > 0 is arbitrary, and hence no partial
limit can be less than 3.

The proof for the superior limit is of course analogous. O

We now remark that if a séquence is not bounded below, then one can
select a subsequence of it tending to —oo. But in this case we also have

lim zp = —oo, and we can make the convention that the inferior limit is
k—o0
once again the smallest partial limit. The superior limit may be finite; if so,

by what has been proved it must be the largest partial limit. But it may also
be infinite. If klim x, = 400, then the sequence is also unbounded from above,
—00

and one can select a subsequence tending to +oco. Finally, if kii_rﬁ T = —00,
—00

which is also possible, this means that supzy = s, — —oo, that is, the
k>n

sequence {z, } itself tends to —oo0, since s, > . Similarly, if lim zx = 400,
k—o00
then z; — +o00.

4 Here we are assuming the natural relations —co < & < +00 between the symbols
—00, +00 and numbers x € R.



94 3 Limits

Taking account of what has just been said we deduce the following propo-
sition.

Proposition 1’. For any sequence, the inferior limit is the smallest of its
partial limits and the superior limit is the largest of its partial limits.

Corollary 3. A sequence has a limit or tends to negative or positive infinity
if and only if its inferior and superior limits are the same.

Proof. The cases when lim zp = hm T = 400 or lim zx = lim TE =
k—o0 k—o0
—o00 have been 1nvest1gated above, and so we may assume that hm T =
k—o0

hm zr = A € R. Since i, = 1nf Ty < z, < supzi = S, and by hypothesis
k>n

hm in = lim s, = A, we also have lim z, = A by properties of limits. O
n—oo n—oo n—o00

Corollary 4. A sequence converges if and only if every subsequence of it
converges.

Proof. The inferior and superior limits of a subsequence lie between those of
the sequence itself. If the sequence converges, its inferior and superior limits
are the same, and so those of the subsequence must also be the same, proving
that the subsequence converges. Moreover, the limit of the subsequence must
be the same as that of the sequence itself.

The converse assertion is obvious, since the subsequence can be chosen as
the sequence itself. O

Corollary 5. The Bolzano-Weierstrass Lemma in its restricted and wider
formulations follows from Propositions 1 and 1' respectively.

Proof. Indeed, if the sequence {x} is bounded, then the points i = lim zy
k—o0

and s = klim z, are finite and, by what has been proved, are partial limits of

—00
the sequence. Only when 7 = s does the sequence have a unique limit point.
When ¢ < s there are at least two.
If the sequence is unbounded on one side or the other, there exists a
subsequence tending to the corresponding infinity. O

Concluding Remarks We have carried out all three points of the program
outlined at the beginning of this section (and even gone beyond it in some
ways). We have given a precise definition of the limit of a sequence, proved
that the limit is unique, explained the connection between the limit operation
and the structure of the set of real numbers, and obtained a criterion for
convergence of a sequence.

We now study a special type of sequence that is frequently encountered
and very useful — a series.
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3.1.4 Elementary Facts about Series

a. The Sum of a Series and the Cauchy Criterion for Convergence
of a Series Let {a,} be a sequence of real numbers. We recall that the sum
q
ap + apt1 + - - +aq, (p < q) is denoted by the symbol > a,. We now wish
n=p
to give a precise meaning to the expression a; + ag + - -+ + a, + - - -, which
expresses the sum of all the terms of the sequence {a,}.

Definition 16. The expression a; + a2 + -+ + a, + - - - is denoted by the

o0

symbol > a, and usually called a series or an infinite series (in order to
n=1

emphasize its difference from the sum of a finite number of terms).

Definition 17. The elements of the sequence {a,}, when regarded as ele-
ments of the series, are called the terms of the series. The element a,, is called
the nth term.

n
Definition 18. The sum s, = > ay is called the partial sum of the series,
k=1

or, when one wishes to exhibit its index, the nth partial sum of the series.’

Definition 19. If the sequence {s,} of partial sums of a series converges,

we say the series is convergent. If the sequence {s,} does not have a limit,

we say the series is divergent.

Definition 20. The limit le sn = s of the sequence of partial sums of the
n—o0

series, if it exists, is called the sum of the series.

It is in this sense that we shall henceforth understand the expression

oo
E anp =38 .
n=1

Since convergence of a series is equivalent to convergence of its sequence of
partial sums {s,}, applying the Cauchy convergence criterion to the sequence
{sn} yields the following theorem.

Theorem 6. (The Cauchy convergence criterion for a series). The series
a1 +---+an+--- converges if and only if for every € > 0 there exists N € N
such that the inequalities m > n > N imply |an, + -+ + am| < €.

Corollary 6. If only a finite number of terms of a series are changed, the
resulting new series will converge if the original series did and diverge if it
diverged.

5 Thus we are actually defining a series to be an ordered pair ({an}, {sn}) of

sequences connected by the relation (sn =3 ak) for all n € N.
k=1
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Proof. For the proof it suffices to assume that the number N in the Cauchy
convergence criterion is larger than the largest index among the terms that
were altered. O

Corollary 7. A necessary condition for convergence of the series a; +-- -+
an + -+ - is that the terms tend to zero as n — oo, that is, it is necessary that

lim a, = 0.
n—o0

Proof. Tt suffices to set m = n in the Cauchy convergence criterion and use
the definition of the limit of a sequence. O

Here is another proof: a,, = s, — s,—1, and, given that lim s, = s, we
n—o0
have lim a, = lim (s, —sp—1) = lim s, — lim s,—; =s—s=0.
n—o00 n—00 n—00 n—oo

Ezample 20. The series 1+q+q?+---+¢"+-- - is often called the geometric
series. Let us investigate its convergence.

Since |¢"| = |g|™, we have |¢g"| > 1 when |q| > 1, and in this case the
necessary condition for convergence is not met. ‘

Now suppose |g| < 1. Then

1-4q"

sSn=1+q+--+¢" =
l—gq

and nlg{.lo Sn = 14, since nleréoq 0if |q| < 1.

o0
Thus the series Y ¢"~! converges if and only if |g| < 1, and in that case
n=1
. . 1
its sum is =g
Ezxample 21. The series 1 + % + e+ % + - - is called the harmonic series,
since each term from the second on is the harmonic mean of the two terms
on either side of it (see Exercise 6 at the end of this section).

The terms of the series tend to zero, but the sequence of partial sums
1 1
Sn=1+z++—,
2 n
as was shown in Example 10, diverges. This means that in this case s, — +00
as n — oo.
Thus the harmonic series diverges.

Ezample 22. The series 1 — 1+ 1 — .-+ (=1)"*! 4 ... diverges, as can be
seen both from the sequence of partial sums 1,0,1,0,... and from the fact
that the terms do not tend to zero.

If we insert parentheses and consider the new series

QI-1)+1=1)+---,



3.1 The Limit of a Sequence 97

whose terms are the sums enclosed in parentheses, this new series does con-
verge, and its sum is obviously zero.
If we insert the parentheses in a different way and consider the series

1+ (-1+)+(-1+1)+---,

the result is a convergent series with sum 1.
If we move all the terms that are equal to —1 in the original series two
places to the right, we obtain the series

1+41—-14+1-141—---,
we can then, by inserting parentheses, arrive at the series
A+ + 14+ +(-14+1)+---,
whose sum equals 2.

These observations show that the usual laws for dealing with finite sums
can in general not be extended to series.

There is nevertheless an important type of series that can be handled ex-
actly like finite sums, as we shall see below. These are the so-called absolutely
convergent series. They are the ones we shall mainly work with.

b. Absolute Convergence. The Comparison Theorem
and its Consequences

o0
Definition 21. The series Y a, is absolutely convergent if the series
n=1

e}
> |an| converges.
n=1

Since |an + -+ + am| < |an| + - - - |am|, the Cauchy convergence criterion
implies that an absolutely convergent series converges.

The converse of this statement is generally not true, that is, absolute
convergence is a stronger requirement than mere convergence, as one can
show by an example.

Example 23. The series 1 — 1+ % - % + % - % + - - -, whose partial sums are
either  or 0, converges to 0.
At the same time, the series of absolute values of its terms

T EE VL S S
2233

diverges, as follows from the Cauchy convergence criterion, just as in the case
of the harmonic series:
1 1 1 1
n+1 +n+1 e n+n+n+n'
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To learn how to determine whether a series converges absolutely or not, it
suffices to learn how to investigate the convergence of series with nonnegative
terms. The following theorem holds.

Theorem 7. (Criterion for convergence of series of nonnegative terms). A
series a1 + -+ -+ an + - - - whose terms are nonnegative converges if and only
if the sequence of partial sums is bounded above.

Proof. This follows from the definition of convergence of a series and the
criterion for convergence of a nondecreasing sequence, which the sequence of
partial sums is, in this case: s; < s <--- <5, <---. O

This criterion implies the following simple theorem, which is very useful
in practice.

Theorem 8. (Comparison theorem). Let Z an and Z b, be two series
n=1
with nonnegative terms. If there exists an 'mdea: NeN such that a,, < b, for

alln > N, then the convergence of the series Z b, implies the convergence
n=1

of Z an, and the divergence of Z a, tmplies the divergence of E b

n=1 n=1

Proof. Since a finite number of terms has no effect on the convergence of a

series, we can assume with no. loss of generality that a,, < b, for every index
o0

n € N. Then A4, Z ar < Z br, = By,. If the series ) b, converges, then
n=1

the sequence {B, } Whlch 1s nondecreasmg, tends to a limit B. But then

A, < B, < B for all n € N, and so the sequence A,, of partial sums of the

oo

series Y. a, is bounded. By the criterion for convergence of a series with
n=1

o0
nonnegative terms (Theorem 7), the series ) a, converges.

n=1
The second assertion of the theorem follows from what has just been
proved through proof by contradiction. O

Ea:ample 24. Since Hnl+—1) < =3 1 < ﬁ for n > 2, we conclude that the

series Z —= and Z n(n 1y converge or diverge together.
n=1
But the latter series can be summed directly, by observmg that mﬂr—l) =
n

% — 741 and therefore kz_: ﬁ =1- Hence Z n(n gy = 1. Conse-

n+1

quently the series Zl > converges. It is interesting that Zl ;15 = %, as will
n= n=

be proved below.
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Example 25. It should be observed that the comparison theorem applies only

to series with nonnegative terms. Indeed, if we set a,, = —n and b, = 0,
(e} o0

for example, we have a, < b, and the series ) b, converges while > a,

n=1 n=1
diverges.

Corollary 8. (The Weierstrass M-test for absolute convergence). Let Y a,

n=1
o0
and Y b, be series. Suppose there exists an index N € N such that |a,| < by,
n=1
for all n > N. Then a sufficient condition for absolute convergence of the

(o] o0
series Y an is that the series Y b, converge.
n=1 n=1

(e
Proof. In fact, by the comparison theorem the series Y |a,| will then con-
n=1

o0
verge, and that is what is meant by the absolute convergence of " a,. O
n=1
This important sufficiency test for absolute convergence is often stated
briefly as follows: If the terms of a series are magjorized (in absolute value) by
the terms of a convergent numerical series, then the original series converges
absolutely.

oo | .
Ezample 26. The series ) =& converges absolutely, since |%#| < ;15 and
n=1

[e2)
the series > ;17 converges, as we saw in Example 24.
n=1

o0
Corollary 9. (Cauchy’s test). Let > an, be a given series and a =
n=1

nll)ngo Y/|an|. Then the following are true:

o0
a) if a < 1, the series Y a, converges absolutely;
n=1

o0
b) if @ > 1, the series > a, diverges;
n=1
c) there exist both absolutely convergent and divergent series for which

a=1.

Proof. a) If a < 1, we can choose ¢ € R such that o < ¢ < 1. Fixing ¢, by

definition of the superior limit, we find N € N such that {/|a,| < ¢ for all
(oo}

n > N. Thus we shall have |a,| < ¢" for n > N, and since the series Y ¢"

n=1
converges for |q| < 1, it follows from the comparison theorem or from the

o0
Weierstrass criterion that the series Y a, converges absolutely.
n=1
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b) Since a is a partial limit of the sequence { {/|a,|} (Proposition 1), there
exists a subsequence {an, } such that hm "%/|an,| = a. Hence if a>1,
there exists K € N such that |ap, | > 1 for all £ > K, and so the necessary

condition for convergence (a, — 0) does not hold for the series Z an. It
n=1
therefore diverges.

c) We already know that the series E diverges and Z converges

n=1 n=1

: 1 _ 1 : T o/l — L —
(absolutely, since || = ). At the same time, nll)n;o \/; = lim 5= =1

n—00

s

T 1 . 1 . 1 \2
and lim 7? =lim -—==I1lim (%=) =1. O
n—oo n? n—0o0 Vn2? n—Nn( Vﬁ)

Ezample 27. Let us investigate the values of € R for which the series
oo
> 2+
n=1
converges.
We compute a= m /(2 + (-1)?)zn| = |z| li_m |2 4+ (=1)"| = 3|z|.

Thus for |z| < 3 the series converges and even absolutely, while for |z| > 3
the series d1verges The case |z| = % 3 requires separate consideration. In the
present case that is an elementary task since for |z| = ; and n even (n = 2k),

we have (2 + (—1)2’°)2kx2k = 3% (%)% = 1. Therefore the series diverges,
since it does not fulfill the necessary condition for convergence.

an41

= ex-

Corollary 10. (d’Alembert’s test).5 Suppose the limit le

o0
ists for the series > an. Then,
n=1

(e}
a) if a < 1, the series Y a, converges absolutely;
n=1

(e
b) if a > 1, the series Y a, diverges;
n=1
c) there exist both absolutely convergent and divergent series for which

a=1.

Proof. a) If a < 1, there exists a number ¢ such that @ < ¢ < 1. Fixing ¢
and using properties of limits, we find an index N € N such that l%| <q
for n > N. Since a finite number of terms has no effect on the convergence
of a series, we shall assume without loss of generality that |“Z—:‘| < q for all
neN.

Since
An+1

an

Jasl 3=
A1

6 J.L.d’Alembert (1717-1783) — French scholar specializing in mechanics. He was
a member of the group of philosophes who wrote the Encyclopédie.
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o0
we find that |an41| < |ai|-¢". But the series > |a1]|g™ converges (its sum is
n=1

obviously |‘“Iq) so that the series E an converges absolutely.
n=1

b) If o > 1, then from some index N € N on we have |%2£1| > 1, that is,
lan] < |ant1],s and the condltlon an — 0, which is necessary “For convergence,

does not hold for the series Z an.

n=1

o0

o0
c) As in the case of Cauchy’s test, the series > 1 an 2 provide
n=1 n=1
examples. 0O

Example 28. Let us determine the values of z € R for which the series

(o 9]
>
= n!
converges.
For z = 0 it obviously converges absolutely.
For z # 0 we have hrn | "“l— lim % =0.
n—o0

Thus, this series converges absolutely for every value of z € R.

Finally, let us consider another special, but frequently encountered class
of series, namely those whose terms form a monotonic sequence. For such
series we have the following necessary and sufficient condition:

Proposition 2. (Cauchy). Ifa; > a3 > --- > 0, the series Z an, converges

n=1

oo
if and only if the series S 2Faye = a3 + 2az + 4ay + 8ag + - - - converges.
k=0

Proof. Since

az <ax<ay,
2a4 < a3 +a4 < 2a2,
4ag < a5 +ag + a7 +ag < 4aq

2”a2n+1 < agngq + - + Qon+1 < 2"a2n s

by adding these inequalities, we find

1

i(Sn.H - al) S A2n+1 —a S Sn y
where Ay, = a1 +---+ag and S,, = a3 +2a2+- - - +2"az~ are the partial sums
of the two series in question. The sequences {Ax} and {S,} are nondecreas-
ing, and hence from these inequalities one can conclude that they are either
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both bounded above or both unbounded above. Then, by the criterion for
convergence of series with nonnegative terms, it follows that the two series
indeed converge or diverge together. O

This result implies a useful corollary.

oo

Corollary. The series Y # converges for p > 1 and diverges for p < 1.7
n=1

Proof. If p > 0, the proposition implies that the series converges or diverges

simultaneously with the series

52 G = S
k=0 k=0

and a necessary and sufficient condition for the convergence of this series is
that ¢ = 217P < 1, that is, p > 1.
oo
If p < 0, the divergence of the series > # is obvious, since all the terms

n=1
of the series are larger than 1. O

o0
The importance of this corollary is that the series 3 n—lp is often used as
n=1
a comparison series to study the convergence of other series.

c. The Number e as the Sum of a Series To conclude our study of series
we return once again to the number e and obtain a series the provides a very
convenient way of computing it.

We shall use Newton’s binomial formula to expand the expression
(1 + %)n Those who are unfamiliar with this formula from high school and
have not solved part g) of Exercise 1 in Sect. 2.2 may omit the present ap-
pendix on the number e with no loss of continuity and return to it after
studying Taylor’s formula, of which Newton’s binomial formula may be re-
garded as a special case.

We know that e = lim (1 + %)n

n—o0
By Newton’s binomial formula

I\n nl nn-1)1
(1+;) —1+ﬁﬁ+Tﬁ+"'+
nn—1)---(n—k+1) 1
+ i A

T e 1 T

(-5 e (D) (-5,

7 Up to now in this book the number n? has been defined formally only for rational
values of p, so that for the moment the reader is entitled to take this proposition
as applying only to values of p for which n? is defined.

1
nn
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Setting (1+1)" =e,and 1+ 1+ % + -+ % = s, we thus have
en<8p (n=1,2,...).
On the other hand, for any fixed &k and n > k, as can be seen from the

same expansion, we have
1 1 1 1 k-1
L1+ (1= bt (1-2) - (1- 2 ) <en
2! n k! n n

As n — oo the left-hand side of this inequality tends to sx and the right-
hand side to e. We can now conclude that s < e for all kK € N.
But then from the relations

e, <sp<e

we find that lim s, =e.
n—o00
In accordance with the definition of the sum of a series, we can now write

11 1
e=1l+—= -+t

19 at

This representation of the number e is very well adapted for computation.
Let us estimate the difference e — s,:

1 1
CE BT
1 1 1
- (n+1)![1+n+2—|~ (n+2)(n+3) +] <
1 1 1
< (n+1)![1+n+2+(n+2)2+”'] -
_ 1 1 . n+2 1
T DL R+ 1R an

0<e—s,=

Thus, in order to make the absolute error in the approximation of e by
sy, less than, say 1073, it suffices that ﬁ < ﬁ. This condition is already
satisfied by sg.

Let us write out the first few decimal digits of e:

e = 2.7182818284590... .

This estimate of the difference e — s,, can be written as the equality

0
e=5,+—, where0< 6, < 1.

nln

It follows immediately from this representation of e that it is irrational.

Inded, if we assume that e = Zi, where p,q € N, then the number ¢le must be
an integer, while
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0 q' ¢ q' 0
le = ¢! ) =gl 4+ P T 9
gle q.(sq+q!q) dt gttt
and then the number %2 would have to be an integer, which is impossible.
For the reader’s information we note that e is not only irrational, but also

transcendental.

3.1.5 Problems and Exercises

1. Show that a number € R is rational if and only if its ¢g-ary expression in any
base g is periodic, that is, from some rank on it consists of periodically repeating
digits.

2. A ball that has fallen from height h bounces to height gh, where g is a constant
coefficient 0 < ¢ < 1. Find the time that elapses until it comes to rest and the
distance it travels through the air during that time.

3. We mark all the points on a circle obtained from a fixed point by rotations of the
circle through angles of n radians, where n € Z ranges over all integers. Describe
all the limit points of the set so constructed.

4. The expression

1
Nk—1+ —
Nk

where nx € N, is called a finite continued fraction, and the expression

1
A+ ————

ng + —
2 n3+

is called an infinite continued fraction. The fractions obtained from a continued
fraction by omitting all its elements from a certain one on are called the convergents.
The value assigned to an infinite continued fraction is the limit of its convergents.
Show that:
a) Every rational number =, where m,n € N can be expanded in a unique
manner as a continued fraction:

m 1
—=q + 1 )
n
q2 +
g3+

Qn-1+ —

n

assuming that g, # 1 for n > 1.
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Hint: The numbers g, ..., ¢n, called the incomplete quotients or elements, can
be obtained from the Euclidean algorithm

m = n-q+7r,
n =r7r1-9q+r2,
T o= T2:9q3+7T3,
by writing it in the form
m o+ 1 o+
—_ = —_— = _
n ! n/ry go+

b) The convergents R1 = q1, R2 = q1 + ql" .. satisfy the inequalities
2

m
R1<R3<"'<R2k_1<Z<R2k<R2k_2<~“<R2.

¢) The numerators P, and denominators Qi of the convergents are formed
according to the following rule:

Py =PFPi1gx + Pr—2, Po=qq2, Pi=q1,

Qr = Qr-1qx +Qr—2, Qa=¢q, Q1 =1.

d) The difference of successive convergents can be computed from the formula

_ _ _(=nF
Ry — Rg—1 = OrOxs (k>1).

e) Every infinite continued fraction has a determinate value.

f) The value of an infinite continued fraction is irrational.

g) /E
1+5 1
+2 R pr— —
1+

h) The Fibonacci numbers 1,1,2,3,5,8,... (that is, un = un—1 + Un—2 and
u; = ug = 1), which are obtained as the denominators of the convergents in g), are
given by the formula

w = L[(LEVB\" _ (1-V5)"
" Vs 2 2 '
i) The convergents Ry = gl;: in g) are such that |% - gf Q;‘Z;‘/g
Compare this result with the assertions of Exercise 11 in Sect. 2.2.

>
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5. Show that
a) the equality

QNI IR I S . S !
2! n!  nln 1.2.2! (n—1)-n-n!

holds for n > 2;

_ = 1 )
b)e=3- % mrnenmian

¢) for computing the number e approximately the formula e ~ 1 + % + % +
-+++ & + —i— is much better than the original formula e & 1+ & + 2 + -+ + .

(Estimate the errors, and compare the result with the value of e given on p. 103)..

6. If a and b are positive numbers and p an arbitrary nonzero real number, then
the mean of order p of the numbers a and b is the quantity

1
a? +bP\?
Sp(a,b) = ( 3 ) .

In particular for p = 1 we obtain the arithmetic mean of a and b, for p = 2 their
square-mean, and for p = —1 their harmonic mean.

a) Show that the mean Sy(a, b) of any order lies between the numbers a and b.

b) Find the limits of the sequences
{$na, b)}, {s_,,(a, b)} .

7. Show that if a > 0, the sequence zp41 = %(xn + i) converges to the square

root of a for any 1 > 0.
Estimate the rate of convergence, that is, the magnitude of the absolute error
|zn — v/a| = |An| as a function of n.

8. Show that

a) So(n) =1°+.--+n’=n,

_ 41 1_n(n+1)_12 1
Sin)=1+---+n =—F5  =3n +2n,
_ 42 2_nn+1)@n+1) 15 1, 1
Sa(n) =194+ +n° = 5 =3n +2n +6n’
2 2
n(n+1) 1 4 3 1 2
S3(n) = 1 A" +2n +4n ,

and in general that
Sk(n) = agp1n ! 4+ + ain+ ao
is a polynomial in n of degree k + 1.

. S&(n) _ 1
P) Jn, WRE = mer
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3.2 The Limit of a Function

3.2.1 Definitions and Examples

Let F be a subset of R and a a limit point of E. Let f : E — R be a
real-valued function defined on E.

We wish to write out what it means to say that the value f(x) of the
function f approaches some number A as the point € E approaches a. It
is natural to call such a number A the limit of the values of the function f,
or the limit of f as z tends to a.

Definition 1. We shall say (following Cauchy) that the function f: F — R
tends to A as x tends to a, or that A is the limit of f as x tends to a, if for
every € > 0 there exists § > 0 such that |f(z) — A| < € for every z € F such
that 0 < |z — a| < 6.

In logical symbolism these conditions are written as
Ve>030>0Vz e E (0<|z—a|<6=]|f(x)— Al <e).

If A is the limit of f(z) as z tends to a in the set E, we write f(z) — A as
z—a,z€E, or limeE f(z) = A. Instead of the expression z — a, z € F,
r—a,x

we shall as a rule use the shorter notation £ > z — a, and instead of
lim _f(z) we shall write lim f(z) = A.
r—a,zEE E>xz—a

Ezample 1. Let E=R\0, and f(z) = zsin 2. We shall verify that

. 1
lim zsin— =0.
E>z—0 x

Indeed, for a given € > 0 we choose § = . Then for 0 < |z| < § = ¢,
- taking account of the inequality |x sin %| < |z|, we shall have |x sin %] <Ee.

Incidentally, one can see from this example that a function f : E — R
may have a limit as £ 3 £ — a without even being defined at the point a
itself. This is exactly the situation that most often arises when limits must
be computed; and, if you were paying attention, you may have noticed that
this circumstance is taken into account in our definition of limit, where we
wrote the strict inequality 0 < |z — a.

We recall that a neighborhood of a point ¢ € R is any open interval
containing the point.

Definition 2. A deleted neighborhood of a point is a neighborhood of the
point from which the point itself has been removed.
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If U(a) denotes a neighborhood of a, we shall denote the corresponding

deleted neighborhood by U (a).
The sets

Ug(a) := ENU(a),
Ue(a) == ENU(a)

will be called respectively a neighborhood of a in E and a deleted neighborhood
ofa in E.
If a is a limit point of E, then Ug(a) # @ for every neighborhood U(a).

If we temporarily adopt the cumbersome symbols [j’ %(a) and Vi§(A) to
denote the deleted d-neighborhood of a in F and the e-neighborhood of A in
R, then Cauchy’s so-called “e-d-definition” of the limit of a function can be
rewritten as

(plim , 7(0) = 4) = W5(4) 3050) (£(T(@) € ()

This expression says that A is the limit of the function f : E —» R as x
tends to a in the set E if for every e-neighborhood Vi(A) of A there exists

a deleted neighborhood U/ %(a) of a in E whose image f( U %(a)) under the
mapping f : E — R is entirely contained in Vi (A).

Taking into account that every neighborhood of a point on the real line
contains a symmetric neighborhood (a é-neighborhood) of the same point,
we arrive at the following expression for the definition of a limit, which we
shall take as our main definition:

Definition 3.

( lim f(x):A) = YVi(A) 3Uz(a) (f(z}E(a)) CVR(A)).

Esz—a

Thus the number A is called the limit of the function f: F — R as z tends
to a while remaining in the set E (a must be a limit point of E) if for every
neighborhood of A there is a deleted neighborhood of a in F whose image
under the mapping f: E — R is contained in the given neighborhood of A.

We have given several statements of the definition of the limit of a func-
tion. For numerical functions, when a and A belong to R, as we have seen,
these statements are equivalent. In this connection, we note that one or an-
other of these statements may be more convenient in different situations. For
example, the original form is convenient in numerical computations, since it
shows the allowable magnitude of the deviation of z from a needed to ensure
that the deviation of f(z) from A will not exceed a specified value. But from
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the point of view of extending the concept of a limit to more general func-
tions the last statement the definition is most convenient. It shows that we
can define the concept of a limit of a mapping f: X — Y provided we have
been told what is meant by a neighborhood of a point in X and Y, that is,
as we say, a topology is given on X and Y.

Let us consider a few more examples that are illustrative of the main
definition.

Ezxample 2. The function

lifz>0,
sgnzx = 0ifx=0,
—1lifz<0

(read “signum z”8) is defined on the whole real line. We shall show that it
has no limit as x tends to 0. The nonexistence of this limit is expressed by

VA € R 3V(A) YU(0) 3z € U(0) (f(z) ¢ V(A)),

that is, no matter what A we take (claiming to be the limit of sgn z as x — 0),
there is a neighborhood V' (A) of A such that no matter how small a deleted

neighborhood ﬁ (0) of 0 we take, that deleted neighborhood contains at least
one point z at which the value of the function does not lie in V(A).

Since sgn = assumes only the values —1, 0, and 1, it is clear that no number
distinct from them can be the limit of the function. For any such number has
a neighborhood that does not contain any of these three numbers.

But if A € {-1,0,1} we choose as V(A) the e-neighborhood of A with
€= -;— The points —1 and 1 certainly cannot both lie in this neighborhood.

But, no matter what deleted neighborhood [3' (0) of 0 we may take, that
neighborhood contains both positive and negative numbers, that is, points
where f(z) =1 and points where f(z) = —1.

Hence there is a point = € U (0) such that f(z) ¢ V(A).

If the function f : E — R is defined on a whole deleted neighborhood of
a point a € R, that is, when U e(a) = [}R(a) =7 (a), we shall agree to write
more briefly  — a instead of £ 5> z — a.
Ezample 3. Let us show that :11_% |sgnz| = 1.

Indeed, for £ € R\ 0 we have |sgnz| = 1, that is, the function is con-
stant and equal to 1 in any deleted neighborhood ﬁ (0) of 0. Hence for any
neighborhood V(1) we obtain f(ﬁ(o)) =1eV().

8 The Latin word for sign.
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Note carefully that although the function |sgnz| is defined at the point
0 itself and |sgn 0| = 0, this value has no influence on the value of the limit
in question. Thus one must not confuse the value f(a) of the function at the
point a with the limit il_lg f(z) that the function has as z — a.

Let R_ and R, be the sets of negative and positive numbers respectively.

Example 4. We saw in Example 2 that the limit lim 0sgnav does not exist.
’ Sr—

Remarking, however, that the restriction sgn|g_ of sgn to R_ is a constant
function equal to —1 and sgn|g, is a constant function equal to 1, we can
show, as in Example 3, that

lim sgnzx=-1, and lim sgnzx=1,
R_>z—0 Ry>z—0
that is, the restrictions of the same function to different sets may have dif-

ferent limits at the same point, or even fail to have a limit, as shown in
Example 2.

Example 5. Developing the idea of Example 2, one can show similarly that
sin—}; has no limit as z — 0.

Indeed, in any deleted neighborhood ﬁ (0) of 0 there are always points of
the form — /21+27m and — /241_2”, where n € N. At these points the function
assumes the values —1 and 1 respectively. But these two numbers cannot
both lie in the e-neighborhood V(A) of a point A € R if € < 1. Hence no
number A € R can be the limit of this function as z — 0.

Ezample 6. If

‘ |2 —7/2 + 27n ne
and )
By ={rema= L nen},
* v |2 /2 + 27n "
then, as shown in Example 4, we find that
. .1 . 1
lim sin—=-land lim sin—=1.
E_>z—0 x E,;>z—0 T

There is a close connection between the concept of the limit of a sequence
studied in the preceding section and the limit of an arbitrary numerical-
valued function introduced in the present section, expressed by the following
proposition.
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Proposition 1. ° The relation Eéim f(z) = A holds if and only if for every
r—a

sequence {z,} of points z, € E \ a converging to a, the sequence { f(wn)}
converges to A.

Proof. The fact that (Elim flz) = A) = ( lim f(zn) = A) follows im-

Sz—a
mediately from the definitions. Indeed, if E;im f(z) = A, then for any
T—a

neighborhood V(A) of A there exists a deleted neighborhood [}E(a) of the

point a in E such that for z € [j'E(a) we have f(z) € V(A). If the sequence
{zn} of points in E \ a converges to a, there exists an index N such that

Ty € ﬁE(a) for n > N, and then f(z,) € V(A). By definition of the limit of
a sequence, we then conclude that le flzn) = A.

We now prove the converse. If A is not the limit of f(z) as F 3 z — a,
then there exists a neighborhood V(A) such that for any n € N, there is a
point z, in the deleted 1-neighborhood of a in E such that f(z,) ¢ V(A).
But this means that the sequence { f (a:n)} does not converge to A, even
though {z,} converges to a. O

3.2.2 Properties of the Limit of a Function

We now establish a number of properties of the limit of a function that are
constantly being used. Many of them are analogous to the properties of the
limit of a sequence that we have already established, and for that reason
are essentially already known to us. Moreover, by Proposition 1 just proved,
many properties of the limit of a function follow obviously and immediately
from the corresponding properties of the limit of a sequence: the uniqueness
of the limit, the arithmetic properties of the limit, and passage to the limit
in inequalities. Nevertheless, we shall carry out all the proofs again. As will
be seen, there is some value in doing so.

We call the reader’s attention to the fact that, in order to establish the
' properties of the limit of a function, we need only two properties of deleted
neighborhoods of a limit point of a set:

B,) [}E(a) # @, that is, the deleted neighborhood of the point in F is
nonempty;

B,) VU's(a)V U"s(a)3 Ur(a) (Us(e) C Uz(a) NU"g(a)),
that is, the intersection of any pair of deleted neighborhoods contains a
deleted neighborhood. This observation leads us to a general concept of a
limit of a function and the possibility of using the theory of limits in the

® This proposition is sometimes called the statement of the equivalence of the
Cauchy definition of a limit (in terms of neighborhoods) and the Heine definition
(in terms of sequences).
E. Heine (1821-1881) — German mathematician.
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future not only for functions defined on sets of numbers. To keep the discus-
sion from becoming a mere repetition of what was said in Sect. 3.1, we shall
employ some useful new devices and concepts that were not proved in that
section.

a. General Properties of the Limit of a Function We begin with some
definitions.

Definition 4. As before, a function f : E — R assuming only one value
is called constant. A function f : E — R is called ultimately constant as

E 3z — aif it is constant in some deleted neighborhood UO'E(a), where a is
a limit point of F.

Definition 5. A function f : E — R is bounded, bounded above, or bounded
below respectively if there is a number C' € R such that |f(z)| < C, f(z) < C,
orC < f(z) forall z € E.

If one of these three relations holds only in some deleted neighborhood

[}E(a), the function is said to be ultimately bounded, ultimately bounded above,
or ultimately bounded below as E 5 x — a respectively.

Ezample 7. The function f(z) = (sin% + z cos —i—) defined by this formula
for £ # 0 is not bounded on its domain of definition, but it is ultimately
bounded as z — 0.

Ezample 8. The same is true for the function f(z) = z on R.

Theorem 1. a) (f : E — R is ultimately the constant A as E> z — a) =

( lim f(a;):A).

E>z—a

b) (3 E;inl) f(x)) = (f : E = R is ultimately bounded as E > © — a).
c) (Eéif.la flz) = A1> A ( lim f(z) = A2) = (A1 = Ao).

E>z—a

Proof. The assertion a) that an ultimately constant function has a limit,
and assertion b) that a function having a limit is ultimately bounded, follow
immediately from the corresponding definitions. We now turn to the proof of
the uniqueness of the limit.

Suppose A; # As. Choose neighborhoods V(4;) and V(A2) having no
points in common, that is, V(A4;) NV (A42) = @. By definition of a limit, we
have

o

lim f(z) = 41 = 30's(a) (f(U's(a)) € V(4)

E>xz—a

lim f(z) = Ay = 3U"5(a) ( F(U"s(a)) V(42)) .

E>x—a
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We now take a deleted neighborhood [j'E(a) of a (which is a limit point of
E) such that UE( ) C U'g(a)NU"g(a). (For example, we could take [}E(a) =
U Bla)NU p £(a), since this intersection is also a deleted neighborhood.)

Since UO'E(a) # &, wetakex € [}E(a). We then have f(z) € V(A4;)NV (A2),
which is impossible since the neighborhoods V(A;) and V(As) have no points
in common. 0O

b. Passage to the Limit and Arithmetic Operations

Definition 6. If two numerical-valued functions f: E - Randg: FE - R
have a common domain of definition F, their sum, product, and quotient are
respectively the functions defined on the same set by the following formulas:

(f+9)(=) := f(z) +9(z),
(f-9)(=@) = f(z)- g(x),
f

(g)(:c) = 98 ,ifg(z) #0forz € E .

(
(

Theorem 2. Let f: E— R and g: E — R be two functions with a common
domain of definition.
If lim f(x) = A and lim g(z) = B, then
E>z—a

a) Ehm (f+g)() A+ B;

b) Jlim (f-g)(z)=

c) E;iflm (g) =5 if B#0 and g(z) #0 forz € E.

As already noted at the beginning of Subsect. 3.2.2, this theorem is an
immediate consequence of the corresponding theorem on limits of sequences,
given Proposition 1. The theorem can also be obtained by repeating the

+ proof of the theorem on the algebraic properties of the limit of a sequence.
The changes needed in the proof in order to do this reduce to referring to

some deleted neighborhood [}E(a) of a in E, where previously we had referred
to statements holding “from some N € N on”. We advise the reader to verify
this.
Here we shall obtain the theorem from its simplest special case when
A = B =0. Of course assertion c¢) will then be excluded from consideration.
A function f : E — R is said to be infinitesimal as E > z — a if

li

EQIxHim f( )

Proposition 2. a) Ifa: E — R and §: E — R are infinitesimal functions
as E > xz — a, then their sum a+ (3 : E — R is also infinitesimal as
Esz—a.



114 3 Limits

b) Ifa: E— R and §: E — R are infinitesimal functions as E > z — a,
then their product o - B : E — R is also infinitesimal as E > = — a.

¢) Ifa: E — R is infinitesimal as E 5 x — a and B : E — R is ultimately
bounded as E > x — a, then the product o - B : E — R is infinitesimal as
E>z—a.

Proof. a) We shall verify that

( lim a(w)=0)/\( lim Az)=0) = lim (a+B)(z) =0) .

E>x—a E>z—a E>z—a
Let € > 0 be given. By definition of the limit, we have

( lim o(z) = 0) = (3 UO'E(a) Vz € UO’E(a) (|a(a:)| < %)) ,

E>x—a

( lim B(z) = 0) = (3 U?'}g(a) Vz € UC"’b(a) (18(=z)| < %)) .

E>xz—a

o

Then for the deleted neighborhood [}E(a) C U'g(a) NU'g(a) we obtain

Vz € U(a) |(a + B)(z)| = |a(z) + Bz)| < a(z)| + |B(z)| < e,

That is, we have verified that lim (a+ 8)(z) =0.
E>z—a

b) This assertion is a special case of assertion c), since every function that
has a limit is ultimately bounded.
c) We shall verify that

(lim a(@)=0) A (3M € R 30s(a) vz € Us(a) (1B(x)| < M)) =

E>z—a
= (lim a(z)8(z) =0) .

E>z—a

Let € > 0 be given. By definition of limit we have

(lim_a() =0) = (30(a) Vo € U's(a) ()] < 7)) -

Then for the deleted neighborhood U'g(a) C U'r(a) N Uo'E(a), we obtain

Ve € Uk(a) [(@- B)@)| = o)) = laa)|8@)] < = -M =<

Thus we have verified that Elim a(z)B(z) =0. O

Sr—a

The following remark is very useful:
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Remark 1.

( lim f(z)= A) o (f(a:) =A+a(z) A

E>z—a

im a(z) = 0).

1
E>xz—a

In other words, the function f : E — R tends to A if and only if it can
be represented as a sum A + a(x), where a(z) is infinitesimal as £ > z — a.
(The function a(z) is the deviation of f(z) from A.)!°

This remark follows immediately from the definition of limit, by virtue of
which

ngl;af(x) =As Eélal:rlm (f(z)—4)=0.

We now give the proof of the theorem on the arithmetic properties of the
limit of a function, based on this remark and the properties of infinitesimal
functions that we have established.

Proof. a) If E%I;I‘l-)a f(z) = Aand Eélirimg(x) = B, then f(z) = A+ a(z) and

g(z) = B + B(z), where a(z) and B(z) are infinitesimal as E 3 ¢ — a. Then
(f+9)(z) = f(z) + g(z) = A+ a(z) + B+ B(z) = (A+ B) + vy(x), where
v(z) = a(z) + B(x), being the sum of two infinitesimals, is infinitesimal as
E>z—a.
Thus lim (f+g)(z)=A+ B.
E>z—a

b) Again representing f(x) and g(z) in the form f(z) = A+ a(z), g(z) =
B + B(x), we have

(f - 9)(@) = f(x)g(z) = (A+ a(z)) (B + B(z)) = A- B+(z),

where v(z) = AB(z) + Ba(z) + a(z)B(z) is infinitesimal as £ > 2 — a
because of the properties just proved for such functions.
Thus, lim (f-g)(z)=A-B.
E>xz—a

c) We once again write f(z) = A+ a(z) and g(z) = B + [(z), where
lim a(z)=0and lim pA(z)=0.
E>z—a E>xz—a

Since B # 0, there exists a deleted neighborhood [}E(a), at all points of
which |B(z)| < 131, and hence |g(z)| = |B + B(=)| > |B| - |B(z)| > L.

Then in ('j'E(a) we shall also have m < IQTI’ that is, the function ﬁ is

ultimately bounded as E 3 £ — a. We then write

10 Here is a curious detail. This very obvious representation, which is nevertheless
very useful on the computational level, was specially noted by the French mathe-
matician and specialist in mechanics Lazare Carnot (1753-1823), a revolutionary
general and academician, the father of Sadi Carnot (1796-1832), who in turn was
the creator of thermodynamics.
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(- g=t 4ot

- ~ (Ba(a) + A8(x)) = (z) .

By the properties of infinitesimals (taking account of the ultimate bounded-
ness of g—(lx—)) we find that the function 7(z) is infinitesimal as E 3 = — a.

i b — A
Thus we have proved that Eélxnlm (L)@ =% O

c. Passage to the Limit and Inequalities

Theorem 3. a) If the functions f : E — R and g : E — R are such that

lim f(z)=A, and lim g(z) = B and A < B, then there exists a deleted
E>z—a E>z—a

neighborhood [}E(a) of a in E at each point of which f(z) < g(x).
b) If the relations f(z) < g(z) < h(z) hold for the functions f : E — R,
g:E—>R,and h: E— R, and if Eiim flz) = E%im h(z) = C, then the
r—ra r—a

limit of g(x) exists as E >z — a, and lim g(z) =C.
E>x—a

Proof. a) Choose a number C such that A < C' < B. By definition of limit, we
find deleted neighborhoods Uo' 'g(a) and U? "z(a) of a in E such that |f(z)—A| <
C—Aforze (;'E(a) and |g(z) —B| < B—-C for z € U?’jg(a). Then at any
point of a deleted neighborhood [}E(a) contained in Uo 'g(a)N Uo "g(a), we find

fl@e)<A+(C—-A)=C=B—(B-C)<g(z).

b)If lim f(z)= lim h(z) = C, then for any fixed € > 0 there exist
E>z—a E>x—a

deleted neighborhoods U'g(a) and U'g(a) of a in E such that C — e < f(z)

for z € U'g(a) and h(z) < C + ¢ for z € U'g(a). Then at any point of a

deleted neighborhood [}E(a) contained in U'g(a) N U'E(a), we have C — e <
flz) < g(z) < h(z) < C + ¢, that is, |g(z) — C| < €, and consequently
Eéim glz)=C. O

r—a

Corollary. Suppose lim f(z) = A and lim g(z) = B. Let [}E(a) be a
E>x—a E>z—a
deleted neighborhood of a in E.
a) If f(z) > g(z) for all x € Ug(a), then A> B
b) f(z) > g(z) for allz € UO'E(a), then A > B ;
c) f(z) > B forallz € [}E(a), then A > B ;
d) f(z) > B forallz € UO'E(a), then A> B .
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Proof. Using proof by contradiction, we immediately obtain assertions a) and
b) of the corollary from assertion a) of Theorem 3. Assertions c) and d) follow
from a) and b) by taking g(z) = B. O

d. Two Important Examples Before developing the theory of the limit of
a function further, we shall illustrate the use of the theorems just proved by
two important examples.

Ezxzample 9.

. sinz
lim —=1.
z—=0 X

Here we shall appeal to the definition of sinz given in high school, that
is, sinz is the ordinate of the point to which the point (1,0) moves under a
rotation of x radians about the origin. The completeness of such a definition
is entirely a matter of the care with which the connection between rotations
and real numbers is established. Since the system of real numbers itself was
not described in sufficient detail in high school, one may consider that we
need to sharpen the definition of sinz (and the same is true of cosx).

We shall do so at the appropriate time and justify the reasoning that for
now will rely on intuition.

a) We shall show that

sinz T
cos2x<7<1for0<|x|<§.

Proof. Since cos? z and #2Z are even functions, it suffices to consider the case
T b

0 < z < m/2. By Fig. 3.1 and the definition of cos z and sinz, comparing the
area, of the sector <OCD, the triangle AOAB, and the sector <OAB, we
have

S«ocp = %lOC| - CD | = %(cosx)(xcosw) = la:cosgw <

2
1 1 . 1 .
< Spro0aB = §|0A| -|BC| = 3 1-sinz = 5 sinz <
1 - 1 1
= — . A = — . 1 . = —I.
< Sq04B 2|OA| | | B x 2:17

B = (cosz,sin )

A=(1,0)

>

Fig. 3.1.
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Dividing these inequalities by %x, we find that the result is what was
asserted. O

b) It follows from a) that
|sinz| < |z|
for any = € R, equality holding only at = 0.
Proof. For 0 < |z| < 7/2, as shown in a), we have
|sinz| < |z]| .

But |sinz| < 1, so that this last inequality also holds for |z| > 7/2 > 1. Only
forr =0do wefindsing=2z=0. O

c) It follows from b) that

lim sinz =0.
xz—0

Proof. Since 0 < |sinz| < |z| and li_r)rb |z| = 0, we find by the theorem on the
T
limit of a function and inequalities (Theorem 3) that lin}) |sinz| = 0, so that
: z—
limsinz =0. O
z—0

sinx

d) We shall now prove that lig}) 02 = 1.

Proof. Assuming that |z| < 7/2, from the inequality in a) we have

. sinx
l1—-sin?z< —<1.
T

But lim(1 —sin?z) = 1 — limsinz - limsinz = 1 — 0 = 1, so that by
z—0 z—0 xz—0

the theorem on passage to the limit and inequalities, we conclude that
lim 22 =1, O
z—0 <
Ezxample 10. Definition of the exponential, logarithmic, and power functions
using limits. We shall now illustrate how the high-school definition of the
exponential and logarithmic functions can be completed by means of the
theory of real numbers and limits.

For convenience in reference and to give a complete picture, we shall start
from the beginning.

a) The exponential function. Let a > 1.

1° For n € N we define inductively a' := a, a”*! := o™ - a.
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In this way we obtain a function a™ defined on N, which, as can be seen
from the definition, has the property

if m,n € Nand m > n.

20 This property leads to the natural definitions

1
a =1, a ":=—forneN,
an

which, when carried out, extend the function a™ to the set Z of all integers,
and then

for any m,n € Z.

3%, In the theory of real numbers we have observed that for a > 0 and
n € N there exists a unique nth root of a, that is, a number x > 0 such that
z™ = a. For that number we use the notation a!/™. It is convenient, since it
allows us to retain the law of addition for exponents:

a= al — (al/n)n _ al/n .. .al/n — al/n+...+1/n‘
For the same reason it is natural to set a™/" := (a'/®)™ and a='/" :=

(a'/™)~! for n € N and m € Z. If it turns out that a(mk)/(nk) = gm/n for
k € Z, we can consider that we have defined a” for r € Q.

49 For numbers 0 < z, 0 < y, we verify by induction that for n € N
(z<y)e @ <y"),

so that, in particular, .
(z=y)e (" =y").

5% This makes it possible to prove the rules for operating with rational
exponents, in particular, that

a(mk)/(nk) — gm/n for k € 7,

and
g™ /™ gma/ne — gma/nitme/ng

Proof. Indeed, a(™*)/("k) > (0 and a™/™ > 0. Further, since

nk

(a(mk)/(nk))"k _ ((al/(nk))mk)

. (al/(nk))mk'nk _ ((al/(nk))"k)mk — amk
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and .
(am/n)nk — ((al/n)n)m — amk

)

it follows that the first of the inequalities that needed to be verified in con-
nection with point 4° is now established.
Similarly, since

(aml/nl R am2/n2)n1n2 — (aml/nl)runz . (amz/nz)nnzz —

min man
- (@) () 2 g
and
(aml/n1+m2/n2)n1n2 — (a(mln2+m2n1)/(n1n2))n1n2 _
ming+man
— 1/(ning)ymanz ) YT natmang
= ((a =a ,

the second equality is also proved. O

Thus we have defined a” for r € Q and a” > 0; and for any r1,m2 € Q,

a™ .aq™ = a7‘1+7‘2 .

69 It follows from 4° that for 71,75 € Q
(ri<rg)=(a" <a™).

Proof. Since (1 < a) & (1 < a'/™) for n € N, which follows immediately
from 4°, we have (a!/?)™ = a™/™ > 1 for n,m € N, as again follows from 4°.
Thus for 1 < a and r > 0, r € Q, we have a” > 1.

Then for 7, < ry we obtain by 5°

a?=a"-a”""M>a"-1=a".0
7% We shall show that for ro € Q

lim a" =a™.
Q3r—ro

Proof. We shall verify that a? — 1 as Q > p — 0. This follows from the fact
that for |p| < 2 we have by 6°

a V" < gP < gl/™ .

We know that a'/” — 1 (and a~/” — 1) as n — co. Then by standard
reasoning we verify that for € > 0 there exists § > 0 such that for |p| < § we
have

l-e<adl <1l+e.

We can take L as § here if 1 — ¢ < a~1/" and a¥/™ < 1 +&.
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We now prove the main assertion.
Given € > 0, we choose § so that

l—ea ™ <a?P <1+ea™™
for |p| < 4. If now |r — rg| < 8, we have
a®(l—ea ™) <a"=a™-a""™ <a”(1+ea""),

which says
a®—e<a <a®+e. O

Thus we have defined a function a” on Q having the following properties:

al=a>1;

T2 _ a1‘1+1‘2 .
- b

a™ <a™ forr <rg;
a™t —-a?asQ>3>r; >y,

T1

a-”-a

We now extend this function to the entire real line as follows.
8 Let z € R,s= sup a",and s = inf a". It is clear that s,i € R,
Qor>z

Qor<z
since for r; < x < r we have a™ < a".

We shall show that actually s = ¢ (and then we shall denote this common
value by a%).

Proof. By definition of s and ¢ we have
at<s<i<a™

forri <z <re. Then0<i—s<a™—a" =a"(a™""-1) <s(a™""-1).
But a®? — 1 as Q 3 p — 0, so that for any € > 0 there exists § > 0 such that
a™™™ —1<egfsfor 0 <ry—r; < 4§ We then find that 0 < i—s < ¢, and
since € > 0 is arbitrary, we conclude that ¢ =s. 0O

We now define a” := s = i.

90 Let us show that a® = lim a".
Q3r—zx

Proof. Taking 8° into account, for ¢ > 0 we find 7 < z such that s —¢ <
’ 1" . .
a” < s=a%and r” such that a®* =i < a"™ < i+e. Since ' < r < r” implies

/ 1" . .
a” <a" <a" , we then have, for all r € Q in the open interval Jr’, |,

a®—e<a <ad®*+e O

We now study the properties of the function a® so defined on R.

10° For z1,z2 € R and a > 1, (71 < 72) = (a®! < a®2).
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Proof. On the open interval |z, z2[ there exist two rational numbers 71 < rs.
If z; <7, < ry < xo, by the definition of a® given in 8° and the properties
of the function a* on Q, we have

aml Sa'f‘l <a7‘2 S aa:2 . D
11° For any 71,72 € R, a® - a%2 = q¥1%32,

Proof. By the estimates that we know for the absolute error in the product
and by property 9°, we can assert that for any € > 0 there exists 6’ > 0 such

that

€ €
aml-am2——<a”-ar2<am1~a12+§

for |z1 — r1| < &', and |zg — ro| < §’. Making §’ smaller if necessary, we can
choose ¢ < &’ such that we also have

aT1+?‘2 _ i < af€1+¢€2 < a?‘1+1‘2 + %

for |x1 — 1| < § and |z2 — 79| < 4, that is, |(z1 + x2) — (r1 + 72)| < 26.
But a™ - a™ = a™ "2, for r;, 2 € Q, so that these inequalities imply
a® - a™ —e <a®t* < g™ . a® ¢

Since € > 0 is arbitrary, we conclude that

T Z2 _— a$1+$2 A D

a’ -a

12° lim a® = a®°. (We recall that “z — x¢” is an abbreviation of
Tr—xTg

‘R >z — z0”).

Proof. We first verify that lirr%) a® = 1. Given € > 0, we find n € N such that
T—

l-e<a Vm<a/" <1+¢.
Then by 10°, for |z| < 1/n we have
l-e<a"<a®<a™<1+e¢,

that is, we have verified that lim a® = 1.
z—0

If we now take § > 0 so that [a*~%° — 1| < ea™*° for |z — zo| < J, we find
™ —e<a®=a"(@""" -1)<a™+¢,

which verifies that lim a* =a%. O
T—To

13° We shall show that the range of values of the function z + a® is the
set R4 of positive real numbers.
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Proof. Let yo € Ry. If a > 1, then as we know, there exists n € N such that
a " <y <a™
By virtue of this fact, the two sets

A={zeR|a” <y} and B ={z € R|yo < a®}

are both nonempty. But since (z; < z3) © (a®* < a®2) (when a > 1), for
any numbers z1,22 € R such that 1 € A and z2 € B we have z1 < z2.
Consequently, the axiom of completeness is applicable to the sets A and B,
and it follows that there exists g such that z; < zg < x5 for all z; € A and
z9 € B. We shall show that a® = yg.

If a® were less than yp, then, since a®+/? — g% as n — oo, there
would be a number n € N such that a®*°*/? < y,. Then we would have
(xo + %) € A, while the point xg separates A and B. Hence the assumption
a®™ < yp is untenable. Similarly we can verify that the inequality a®™ > yo
is also impossible. By the properties of real numbers, we conclude from this
that a® =1yo. O

14° We have assumed up to now that a > 1. But all the constructions
could be repeated for 0 < @ < 1 . Under this condition 0 < a” < 1 if r > 0,
so that in 6° and 10° we now find that (z; < z2) = (a®* > a®2) where
O<a<l.

Thus for a > 0, a # 1, we have constructed a real-valued function z — a”
on the set R of real numbers with the following properties:

1) a* =g

2) a®t . g% = az1+12;

3) a® — a® as x — xo;

4) (@™ < a®2) & (21 < z2) if @ > 1, and (a® > a™) & (r1 < z2) if
0<a<l;

5) the range of values of the mapping z — a® is Ry = {y € R|0 < y},
the set of positive numbers.

Definition 7. The mapping = — a® is called the exponential function with
base a.

The mapping x — €%, which is the case a = e, is encountered particu-
larly often and is frequently denoted exp z. In this connection, to denote the
mapping = — a®, we sometimes also use the notation exp, z.

b) The logarithmic function The properties of the exponential function
show that it is a bijective mapping exp, : R — R . Hence it has an inverse.

Definition 8. The mapping inverse to exp, : R =+ Ry is called the logarithm
to base a (0 < a, a # 1), and is denoted

log, : Ry = R.

Definition 9. For base a = e, the logarithm is called the natural logarithm
and is denoted In : Ry — R.
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The reason for the terminology becomes clear under a different approach
to logarithms, one that is in many ways more natural and transparent, which
we shall explain after constructing the fundamentals of differential and inte-
gral calculus.

By definition of the logarithm as the function inverse to the exponential
function, we have

Vz € R (log,(a®) =),
Vy € Ry (a'%¥ =y).

It follows from this definition and the properties of the exponential func-
tion in particular that in its domain of definition R} the logarithm has the
following properties:

1) log,a = 1;

2') log,(y1 - y2) = log, y1 + log, y2;

3') log,y — log, yo as Ry 3 y — yo € Ry;

4") (logy1 < log,y2) & (y1 < y2) if @ > 1 and (log, y1 > log, ¥2) <
(1 <y2)if0<a<;

5’) the range of values of the function log, : R+ — R is the set R of all
real numbers.

Proof. We obtain 1’) from property 1) of the exponential function and the
definition of the logarithm.

We obtain property 2') from property 2) of the exponential function.
Indeed, let z; = log, ¥1 and x2 = log, y2. Then y; = a®™ and y; = a*?, and
so by 2), y1-y2 = a® -a®2 = a® 2 from which it follows that log, (y1-y2) =
1 + Za.

Similarly, property 4) of the exponential function implies property 4’) of
the logarithm.

It is obvious that 5) = 5').

Property 3') remains to be proved.

By property 2') of the logarithm we have

Y

log, y — log, yo = log, (y_o) ’

and therefore the inequalities
—e<log,y—log,yo <€

are equivalent to the relation
log,(a™f) = —¢ < log, (yi) < e =log,(a®),
0

which by property 4’) of the logarithm is equivalent to

—a€<£<a5 for a>1,

Yo
£<a"E for 0<a<1.

M~

af <
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In any case we find that if
Yoa € <y < yoa® when a > 1

or
yoaf <y <yoa *whenl0<a<l,

we have
—e <log,y—log,yo < €.

Thus we have proved that

R+9yli>rlg;lo€R+ log,y =log,yo . O
Figure 3.2 shows the graphs of the functions €%, 10%, Inz, and log;¢ z =:
log z; Fig. 3.3 gives the graphs of (1)%, 0.1%, log, /. z, and log, ; z.
We now give a more detailed discussion of one property of the logarithm
that we shall have frequent occasion to use.
We shall show that the equality

6) log, (b%) = alog, b
holds for any b > 0 and any a € R.

Proof. 1° The equality is true for o = n € N. For by property 2') of the
logarithm and induction we find log,(y1 - yn) = log, y1 + - - - + log, Yn, s0
that

log,(b") =log, b+ ---+1log,b=mnlog,b.

10*
Yy e®
3_
e
2r ,
L Inz
1 .7
/// L —
x ' . log,o
L7710 1 2 e 3 T

Fig. 3.2.
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0,1*
(1/e)*

logy 1 =

1Ogl/(—: T

Fig. 3.3.

20 log, (b~1) = —log, b, for if B = log, b, then

b=d?, b'=aP and log,(b"!)=-13.

3% From 1° and 2° we now conclude that the equality log, (b%) = alog, b

holds for a € Z.
40 log, (b'/™) = 1 log, b for n € Z. Indeed,

log, b = log, (b*/™)" = nlog, (b'/") .

59 We can now verify that the assertion holds for any rational number

a= "€ Q. In fact,

% log, b = mlog, (b/") = log, (b*/™)™ = log, (6™™) .

6°. But if the equality log, b" = rlog, b holds for all 7 € Q, then letting r
in Q tend to a, we find by property 3) for the exponential function and 3')
for the logarithm that if r is sufficiently close to a, then b" is close to b* and

log,, b" is close to log, b*. This means that

lim log, b" = log, b* .

Qor—a

But log, b" = rlog, b, and therefore

log, b* = Qéirrga log, b" = Q;irn_lm rlog,b=alog,b. O
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From the property of the logarithm just proved, one can conclude that
the following equality holds for any «, 8 € R and a > 0:
6) (a*)P = a*P.

Proof. For a = 1 we have 1¢ = 1 by definition for all & € R. Thus the equality
is trivial in this case.
If a # 1, then by what has just been proved we have

log,((a*)?) = Blog,(a*) = B~ alog, a = - & = log,(a*) ,
which by property 4’) of the logarithm is equivalent to this equality. O

c) The power function. If we take 1* = 1, then for all z > 0 and @ € R
we have defined the quantity z* (read “z to power o).

Definition 10. The function z +— x* defined on the set Ry of positive
numbers is called a power function, and the number « is called its exponent.

A power function is obviously the composition of an exponential function
and the logarithm; more precisely
% = aloga(z"‘) =a® log, =

Figure 3.4 shows the graphs of the function y = z* for different values of
the exponent.

Y z-1/2
z7 ! z?
3
z!
1 ------- {
0 1 T
Fig. 3.4.

3.2.3 The General Definition of the Limit of a Function
(Limit over a Base)

When proving the properties of the limit of a function, we verified that the
only requirements imposed on the deleted neighborhoods in which our func-
tions were defined and which arose in the course of the proofs were the prop-
erties B;) and B;), mentioned in the introduction to the previous subsection.
This fact justifies the definition of the following mathematical object.
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a. Bases; Definition and Elementary Properties

Definition 11. A set B of subsets B C X of a set X is called a base in X if
the following conditions hold:

B;) VB € B (B # 9);
By) VB, € BYB, € B3B€ B (B C B NBy).

In other words, the elements of the collection B are nonempty subsets of
X and the intersection of any two of them always contains an element of the

same collection.
We now list some of the more useful bases in analysis.

Notation for Read Sets (elements) Definition of and
the base of the base notation for elements
T —a x tends Deleted neigh- U (a) :=
to a borhoods of a € R ={z€Rla-0 <

<z<a+dAz#al,
where 6; >0, 62 > 0

T — 00 z tends Neighborhoods U(o0) :=
to infinity of infinity ={z € R|é < |z|},
where § € R
z—>a,z€E z tends to a Deleted neigh-* I}E(a) =EnN Ij'(a)
or in E borhoods of a in
E>sxz—a
or
r—ra
€E
r—= 00, TtE€EE z tends to Neighborhoods™* Ug(o0) := ENU(c0)
or infinity in F of infinity in F
E>xz— o
or
T —>00
€E

* It is assumed that a is a limit point of E.
** It is assumed that F is not bounded.

If E=Ef={ze€R|z >a} (resp. E = E; = {z € R|z < a}) we write
z — a+0 (resp. z — a—0) instead of z — a, € E, and we say that = tends
to a from the right (resp. x tends to a from the left) or through larger values
(resp. through smaller values). When a = 0 it is customary to write x — 40
(resp. x — —0) instead of x — 0 + 0 (resp. z — 0 — 0).

The notation E > x — a + 0 (resp. E 3 x — a — 0) will be used instead
ofz = a,z € ENE} (resp. z — a, z € EN E; ). It means that z tends to
a in F while remaining larger (resp. smaller) than a.
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If
E=E}f ={zeR|c<x} (resp. E=Ey ={z€R|z<c}),

we write £ — +00 (resp. £ — —o0) instead of z — oo, x € E and say that z
tends to positive infinity (resp. x tends to negative infinity).

The notation £ 5 £ — 400 (resp. E 3 £ — —o0) will be used instead of
x — 00,z € ENEY (resp. x — 00, x € ENEL).

When E = N, we shall write (when no confusion can arise), as is custom-
ary in the theory of limits of sequences, n — oo instead of z — oo, z € N.

We remark that all the bases just listed have the property that the inter-
section of two elements of the base is itself an element of the base, not merely
a set containing an element of the base. We shall meet with other bases in
the study of functions defined on sets different from the real line.!!

We note also that the term “base” used here is an abbreviation for what
is called a “filter base”, and the limit over a base that we introduce below is,
as far as analysis is concerned, the most important part of the concept of a
limit over a filter'2, created by the modern French mathematician H. Cartan.

b. The limit of a Function over a Base

Definition 12. Let f : X — R be a function defined on a set X and B a
base in X. A number A € R is called the limit of the function f over the
base B if for every neighborhood V(A) of A there is an element B € B whose
image f(B) is contained in V(A).

If A is the limit of f : X — R over the base B, we write

lilrsnf(a:) =A.

We now repeat the definition of the limit over a base in logical symbols:

(lilrsnf(a:) =A):=VV(A) IBe B (f(B) C V(4)).

Since we are considering numerical-valued functions at the moment, it is
useful to keep in mind the following form of this fundamental definition:

(lillénf(a:)=A) :=Ve>03IBeBVze B (|f(z)—Al<e).

In this form we take an e-neighborhood (symmetric with respect to A)
instead of an arbitrary neighborhood V(A). The equivalence of these defini-
tions for real-valued functions follows from the fact mentioned earlier that

11 For example, the set of open disks (not containing their boundary circles) con-
taining a given point of the plane is a base. The intersection of two elements of
the base is not always a disk, but always contains a disk from the collection.

12 For more details, see Bourbaki’s General topology Addison-Wesley, 1966.
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every neighborhood of a point contains a symmetric neighborhood of the
same point (carry out the proof in full!).

We have now given the general definition of the limit of a function over a
base. Earlier we considered examples of the bases most often used in analysis.
In a specific problem in which one or another of these bases arises, one must
know how to decode the general definition and write it in the form specific
to that base.

Thus,

( lim f(x)=A):=Ve>036>0Vz€la—4al (|f(x)—Al<e),

z—a—0

(zggloof(x)=A) =Ve>03eRVz <4 (|f(z) — Al <e) .

In our study of examples of bases we have in particular introduced the
concept of a neighborhood of infinity. If we use that concept, then it makes
sense to adopt the following conventions in accordance with the general def-
inition of limit:

(lizrgn f(x) = 00) :==VV(oc0) 3B € B (f(B) C V(0)) ,
or, what is the same,
(lilrgnf(a:)=oo) =Ve>03BeBVze B (e<|f(z)]),
(lilrsnf(x)=+oo) :=Ve eRIBeBVz € B (e < f(z)),
(lilrsnf(x)=—oo) :=VecRIBeBVzeB (f(z)<e).

The letter € is usually assumed to represent a small number. Such is not
the case in the definitions just given, of course. In accordance with the usual
conventions, for example, we could write

(z—l—lbg-loof(x) =—00):=Ve€e RIS €RVz >4 (f(z) <e).

We advise the reader to write out independently the full definition of limit
for different bases in the cases of both finite (numerical) and infinite limits.

In order to regard the theorems on limits that we proved for the special
base E 5> x — a in Subsect. 3.2.2 as having been proved in the general case of
a limit over an arbitrary base, we need to make suitable definitions of what
it means for a function to be ultimately constant, ultimately bounded, and
infinitesimal over a given base.

Definition 13. A function f : X — R is ultimately constant over the base
B if there exists a number A € R and an element B € B such that f(z) = A
for all z € B.

Definition 14. A function f : X — R is ultimately bounded over the base B
if there exists a number ¢ > 0 and an element B € B such that |f(z)| < ¢ for
all z € B.
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Definition 15. A function f : X — R is infinitesimal over the base B if
lilrsn f(z)=0.

After these definitions and the fundamental remark that all proofs of the
theorems on limits used only the properties B;) and Bs), we may regard all
the properties of limits established in Subsect. 3.2.2 as valid for limits over
any base.

In particular, we can now speak of the limit of a function as x — oo or as
I — —00 Or as T — +00.

In addition, we have now assured ourselves that we can also apply the
theory of limits in the case when the functions are defined on sets that are
not necessarily sets of numbers; this will turn out to be especially valuable
later on. For example, the length of a curve is a numerical-valued function
defined on a class of curves. If we know this function on broken lines, we can
define it for more complicated curves, for example, for a circle, by passing to
the limit.

At present the main use we have for this observation and the concept
of a base introduced in connection with it is that they free us from the
verifications and formal proofs of theorems on limits for each specific type
of limiting passage, or, in our current terminology, for each specific type of
base.

In order to master completely the concept of a limit over an arbitrary
base, we shall carry out the proofs of the following properties of the limit of
a function in general form.

3.2.4 Existence of the Limit of a Function

a. The Cauchy Criterion Before stating the Cauchy criterion, we give the
following useful definition.

Definition 16. The oscillation of a function f: X - Ronaset F C X is
(/J(f,E) = SupEIf(zl)_f(x2)| )

T1,T2€

that is, the least upper bound of the absolute value of the difference of the
values of the function at two arbitrary points z1,22 € E.

Ezample 11. w(z?,[-1,2]) = 4;
Ezample 12. w(z,[-1,2]) = 3;
Ezample 13. w(z,] —1,2[) = 3;
Ezample 14. w(sgnz,[-1,2]) =2;
Ezample 15. w(sgnz,[0,2]) = 1;
FEzample 16. w(sgnz,]0,2]) = 0.
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Theorem 4. (The Cauchy criterion for the existence of a limit of a function).
Let X be a set and B a base in X.

A function f: X — R has a limit over the base B if and only if for every
€ > 0 there exists B € B such that the oscillation of f on B is less than €.

Thus,
Ellilrsnf(x) & Ve>03BeB (w(f,B)<e).

Proof. Necessity. If lilrsn f(z) = A € R, then, for all € > 0, there exists an

element B € B such that |f(z) — A| < €/3 for all z € B. But then, for any
T1,x2 € B we have

F(en) = F@2)] < 1) = Al +15(z2) - Al < =,

and therefore w(f; B) < e.

Sufficiency. We now prove the main part of the criterion, which asserts
that if for every € > 0 there exists B € B for which w(f, B) < ¢, then the
function has a limit over B.

Taking € successively equal to 1,1/2,...,1/n, ..., we construct a sequence
By, Bs,...,By ... of elements of B such that w(f,B,) < 1/n, n € N.
Since B, # @, we can choose a point z, in each B,. The sequence
f(z1), f(z2),..., f(xn),...is a Cauchy sequence. Indeed, B, N B, # &, and,
taking an auxiliary point x € B, N By, we find that |f(z.) — f(zm)| <
|f(zn) — f(@)] + |f(z) — f(zm)] < 1/n + 1/m. By the Cauchy criterion
for convergence of a sequence, the sequence {f(z,), n € N} has a limit
A. Tt follows from the inequality established above, if we let m — oo,
that |f(zn) — A] < 1/n. We now conclude, taking account of the in-
equality w(f;Bn) < 1/n, that |f(z) — A| < e at every point x € B, if
n>N=[2/e]+1. O

Remark. This proof, as we shall see below, remains valid for functions with
values in any so-called complete space Y. If Y = R, which is the case we are
most interested in just now, we can if we wish use the same idea as in the
proof of the sufficiency of the Cauchy criterion for sequences.

Proof. Setting mp = ilég f(z) and Mg = sup f(z), and remarking that
T zEB

mp, < mp,nB, < Mp,nB, < Mp, for any elements B; and B; of the
base B, we find by the axiom of completeness that there exists a number
A € R separating the numerical sets {mp} and {Mp}, where B € B. Since
w(f; B) = Mp — mp, we can now conclude that, since w(f; B) < &, we have
|f(z) — A| < € at every point z € B. 0O

Ezxample 17. We shall show that when X = N and B is the base n — oo,
n € N, the general Cauchy criterion just proved for the existence of the limit



3.2 The Limit of a Function 133

of a function coincides with the Cauchy criterion already studied for the
existence of a limit of a sequence.

Indeed, an element of the base n — 0o, n € N, is a set B =NNU(o0) =
{n € N| N < n} consisting of the natural numbers n € N larger than some
number N € R. Without loss of generality we may assume N € N. The
relation w(f; B) < € now means that |f(n1) — f(n2)| < e for all ny,ny > N.

Thus, for a function f : N — R, the condition that for any € > 0 there
exists B € B such that w(f; B) < ¢ is equivalent to the condition that the
sequence {f(n)} be a Cauchy sequence.

b. The Limit of a Composite Function

Theorem 5. (The limit of a composite function). Let Y be a set, By a base
mY,and g:Y — R a mapping having a limit over the base By. Let X be
a set, Bx a base in X and f : X — Y a mapping of X into Y such that
for every element By € By there exists Bx € Bx whose image f(Bx) is
contained in By .

Under these hypotheses, the composition go f : X — R of the mappings f
and g is defined and has a limit over the base Bx and lzigl)l{’l(go Nz) = lzigm' 9(y).

Y

Proof. The composite function go f : X — R is defined, since f(X) C
Y. Suppose lligm 9(y) = A. We shall show that lligm(g o f)(z) = A. Given
Y X

a neighborhood V(A) of A, we find By € By such that g(By) C V(A4).
By hypothesis, there exists Bx € Bx such that f(Bx) C By. But then
(go f)(Bx) = g(f(Bx)) C g(By) C V(A). We have thus verified that A is
the limit of the function (go f) : X — R over the base Bx. O

Ezample 18. Let us find the following limit:

. sinTz
lim =

?
z—=0 Tz

If we set g(y) = %Q and f(z) = Tz, then (g o f)(z) = ﬂ‘;gﬁ—ﬁ In this
case Y = R\ 0 and X = R. Since lim g(y) = lim ¥2¥ = 1, we can apply
y—0 y—=0 Y
the theorem if we verify that for any element of the base y — 0 there is an
element of the base x — 0 whose image under the mapping f(z) = 7z is
contained in the given element of the base y — 0.

The elements of the base y — 0 are the deleted neighborhoods [}y (0) of
the point 0 € R.

The elements of the base z — 0 are also deleted neighborhoods [}X (0) of

the point 0 € R. Let Uy (0) = {y € Rla < y < B, y # 0} (where a,f € R
and a < 0, 8 > 0) be an arbitrary deleted neighborhood of 0 in Y. If we take

Ij'X(O) ={reRl¢<z< %, T # 0}, this deleted neighborhood of 0 in X
has the property that f( Ux 0)) = Uy (0) c Uy (0).
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The hypotheses of the theorem are therefore satisfied, and we can now

assert that . .
. sinTx . siny
lim = lim — =
z—=0 Tx y—=0 gy

1.

Ezample 19. The function g(y) = |sgny|, as we have seen (see Example 3),
has the limit lin}) |sgny| = 1.
y—

The function y = f(z) = zsin %, which is defined for x # 0, also has the
limit lim zsini =0 (see Example 1).
T

However, the function (go f)(z) = ’sgn(m sin %)I has no limit as x — 0.

Indeed, in any deleted neighborhood of £ = 0 there are zeros of the
function sini, so that the function |sgn(zsinl)| assumes both the value
1 and the value 0 in any such neighborhood. By the Cauchy criterion, this
function cannot have a limit as z — 0.

But does this example not contradict the Theorem 57

Check, as we did in the preceding example, to see whether the hypotheses

of the theorem are satisfied.

Ezxample 20. Let us show that

lim (1 + i)x =e.

r—0o0

Proof. Let us make the following assumptions:

Y =N, By isthebasen »o00,neN;
X =Ry ={z e R|z >0}, By is the base z — +00;

f:X =Y is the mapping z iy [z] ,

where [z] is the integer part of z (that is, the largest integer not larger than z).

Then for any By = {n € N|n > N} in the base n — oo, n € N there
obviously exists an element Bx = {z € R|z > N + 1} of the base z — 400
whose image under the mapping z — [z] is contained in By.

The functions g(n) = (1 + %)n, gi(n) = (1+ %_H)n, and go(n) =
(1 + %)nﬂ, as we know, have the number e as their limit in the base n — oo,
neN.

By Theorem 4 on the limit of a composite function, we can now assert
that the functions

Gen@=(1+5)" @en=(1+15)",

[z]+1
(920 f) = <1+ﬁ> "

also have e as their limit over the base £ — +oo0.
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It now remains for us only to remark that

[z] z z]+1
(1+[x]%) <(1+%) <(1+é)wr

for > 1. Since the extreme terms here tend to e as x — +o00, it follows from
Theorem 3 on the properties of a limit that BI-P (1+ %)x =e. O
x o0

Using Theorem 5 on the limit of a composite function, we now show that
lim (1 + %)x =e.

r—>—00

Proof. We write

m (142)" = - t1>‘in L ﬁ)(_t) = tim (1-7) "=
1
+

1 1
— lim (1+—) - —) lim (1+-—)=
t—+o00 -1 t—>+oo t—+o00 t—
1 t—1 1\¢
= lim (1-1-—) = lim (1—1——) =e.
t—+oo 1 u—~+00 u
When we take account of the substitutions ©u =t — 1 and t = —z, these

equalities can be justified in reverse order (!) using Theorem 5. Indeed, only
after we have arrived at the limit ll)r_{l (1+ %)u, whose existence has already
u o0

been proved, does the theorem allow us to assert that the preceding limit also
exists and has the same value. Then the limit before that one also exists, and
by a finite number of such transitions we finally arrive at the original limit.
This is a very typical example of the procedure for using the theorem on the
limit of a composite function in computing limits.

Thus, we have

1\= 1\=
lim (1+—) —e= lim (1+—) .
T——00 X x—+00 x

It follows that lim (1 + l)z = e. Indeed, let £ > 0 be given.
r—00

Since lim (1+ %) = e, there exists ¢; € R such that | (1+1 —e| <e
T——00
for z < ¢;.
Since lim (1+1)" =e, there exists c; € R such that |(1+1 —e| <€
r—+o00
for cp < .

Then for |z| > ¢ = max{|c1|,|c2|} we have |(1 + %)z — e| < ¢, which
verifies that lim (1+1)*=e. O
r—00

Example 21. We shall show that

lim(1+t)/t =e.
0
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Proof. After the substitution = 1/t, we return to the limit considered in
the preceding example.

Ezample 22.

lim = =0,ifg>1.

z—+o0 g¥
Proof. We know (see Example 11 in Sect. 3.1) that ILm #=0 ifg>1.
n—00
Now, as in Example 3 of Sect. 3.1, we can consider the auxiliary mapping
f : Ry — N given by the function [z] (the integer part of z). Using the
inequalities

q gl T gz T gl

1 [z] x<[m]+1'

and taking account of the theorem on the limit of a composite function, we
find that the extreme terms here tend to 0 as z — +oo. We conclude that
lim £=0. O
z—+o00 4
Example 23.
1
lim —2a?

x—+o00 x

=0.

Proof. Let a > 1. Set t = log, z, so that z = a'. From the properties of the
exponential function and the logarithm (taking account of the unboundedness
of a™ for n € N) we have (z — +00) & (t = +00). Using the theorem on the
limit of a composite function and the result of Example 11 of Sect. 3.1, we
obtain

log,z . t

lim lim —
z—+00 T t—+oo gt

=0.

If0<a<1weset —t =log,z, z =a"*. Then (z = +00) & (t = +0),
and since 1/a > 1, we again have

—t t
lim 2%%2% _ jm L= fim
z54o0 T t—+o0 g~ t—+o0 (1/a)t

c. The Limit of a Monotonic Function We now consider a special class of
numerical-valued functions, but one that is very useful, namely the monotonic
functions.

Definition 17. A function f: F — R defined on a set E C R is said to be

increasing on E if
Vz1,z2 € E (21 < 22 = f(21) < f(22)) 3
nondecreasing on E if

Vzi,z9 € E (21 < 22 = f(21) < f22)) 5
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nonincreasing on E if
Vz1,z2 € E (21 < 2 = f(21) > f(22)) 5
decreasing on E if
Voy,zp € E (21 < 22 = f(z1) > f22)) -

Functions of the types just listed are said to be monotonic on the set E.

Assume that the numbers (or symbols —oco or +o0) i = inf E and
s = sup F are limit points of the set E, and let f : E — R be a mono-
tonic function on E. Then the following theorem holds.

Theorem 6. (Criterion for the existence of a limit of a monotonic function).
A necessary and sufficient condition for a function f : E — R that is nonde-
creasing on the set E to have a limit as x — s, x € E, is that it be bounded
above. For this function to have a limit as x — i, x € E, it is necessary and
sufficient that it be bounded below.

Proof. We shall prove this theorem for the limit Eéim f(z).
r—s

If this limit exists, then, like any function having a limit, the function f
is ultimately bounded over the base £ > z — s.

Since f is nondecreasing on E, it follows that f is bounded above. In fact,
we can even assert that f(z) < Elai;rl’ . f(z). That will be clear from what

follows.
Let us pass to the proof of the existence of the limit E;im f(z) when f
r—S

is bounded above.
Given that f is bounded above, we see that there is a least upper bound

of the values that the function assumes on E. Let A = sup f(z). We shall
z€E
show that Egim f(z) = A. Given ¢ > 0, we use the definition of the least
. T—s

upper bound to find a point ¢ € F for which A—e < f(zo) < A. Then, since
f is nondecreasing on F, we have A —¢ < f(z) < A for o < < E. But the
set {x € E|zo < z} is obviously an element of the base z — s, z € E (since
s = sup E). Thus we have proved that ngi, . f(z) = A.

For the limit Elaim _f(z) the reasoning is analogous. In this case we have
1

olim, /@) = i 7). ©

d. Comparison of the Asymptotic Behavior of Functions We begin
this discussion with some examples to clarify the subject.

Let 7(z) be the number of primes not larger than a given number z € R.
Although for any fixed  we can find (if only by explicit enumeration) the
value of 7(z), we are nevertheless not in a position to say, for example, how
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the function = (z) behaves as £ — 400, or, what is the same, what the
asymptotic law of distribution of prime numbers is. We have known since
the time of Euclid that m(z) — +o00 as £ — 400, but the proof that ()
grows approximately like 7 was achieved only in the nineteenth century by
P.L. Chebyshev.!3

When it becomes necessary to describe the behavior of a function near
some point (or near infinity) at which, as a rule, the function itself is not de-
fined, we say that we are interested in the asymptotics or asymptotic behavior
of the function in a neighborhood of the point.

The asymptotic behavior of a function is usually characterized using a
second function that is simpler or better studied and which reproduces the
values of the function being studied in a neighborhood of the point in question
with small relative error.

Thus, as * — +oo0, the function 7(x) behaves like %; as z — 0, the
function Sig”” behaves like the constant function 1. When we speak of the
behavior of the function z2 +z +sin L as £ — oo, we shall obviously say that
it behaves basically like 22, while in speaking of its behavior as z — 0, we
shall say it behaves like sin 2.

We now give precise definitions of some elementary concepts involving
the asymptotic behavior of functions. We shall make systematic use of these
concepts at the very first stage of our study of analysis.

Definition 18. We shall say that a certain property of functions or a certain
relation between functions holds ultimately over a given base B if there exists
B € B on which it holds.

We have already interpreted the notion of a function that is ultimately
constant or ultimately bounded in a given base in this sense. In the same
sense we shall say from now on that the relation f(z) = g(z)h(z) holds ulti-
mately between functions f, g, and h. These functions may have at the outset
different domains of definition, but if we are interested in their asymptotic
behavior over the base B, all that matters to us is that they are all defined
on some element of B.

Definition 19. The function f is said to be infinitesimal compared with
the function g over the base B, and we write f go(g) or f = o(g) over B if

the relation f(z) = a(x)g(x) holds ultimately over the B, where a(z) is a
function that is infinitesimal over B.

Ezample 24. 2?2 = o(z) as z — 0, since 22 =z - .

Ezample 25. * = o(z?) as * — oo, since ultimately (as long as z # 0),

_1.,.2
.T—z.’l'}.

13 P L. Chebyshev (1821-1894) — outstanding Russian mathematician and special-
ist in theoretical mechanics, the founder of a large mathematical school in Russia.
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From these examples one must conclude that it is absolutely necessary to
indicate the base over which f = o(g).

The notation f = o(g) is read “f is little-oh of ¢”.

It follows from the definition, in particular, that the notation f §o(1),

which results when g(z) = 1, means simply that f is infinitesimal over B.

Definition 20. If f = o(g) and g is itself infinitesimal over B, we say that f
is an infinitesimal of higher order than g over B.

Ezample 26. 2 = L is an infinitesimal of higher order than z~! = 1 as
x x

T — 0.

Definition 21. A function that tends to infinity over a given base is said to
be an infinite function or simply an infinity over the given base.

Definition 22. If f and g are infinite functions over B and f = o(g), we say
that g is a higher order infinity than f over B.

Ezample 27. L — coasz — 0, 23 = 00 as z — 0 and 1 = o(Z5). Therefore

;15 is a higher order infinity than % asx — 0.

At the same time, as £ — oo, z2 is a higher order infinity than z.
y

It should not be thought that we can characterize the order of every
infinity or infinitesimal by choosing some power z™ and saying that it is of
order n.

Ezample 28. We shall show that for a > 1 and any n € Z

n
lim — =0,
z—+o00 %
that is, 2" = o(a®) as z — +oo0.

Proof. If n < 0 the assertion is obvious. If n € N, then, setting ¢ = {/a, we

have ¢ > 1 and Z—: = (—””—)", and therefore

qI
lim = = lim (—) = lim —-....- lim —=0.
z—+o00 % z—+00 \ g% z—+oo g% z—+oo g%
n factors

We have used (with induction) the theorem on the limit of a product and
the result of Example 22. 0O

Thus, for any n € Z we obtain 2" = o(a®) as ¢ — +oo if a > 1.

Ezample 29. Extending the preceding example, let us show that
{e7

lim — =0
z—+o0 a%

for a > 1 and any a € R, that is, z* = o(a*) as z — +o0.
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Proof. Indeed, let us choose n € N such that n > «. Then for z > 1 we
obtain

¢ "
0< —< —
a® a®
Using properties of the limit and the result of the preceding example, we find
that lim Z2 =0. O
z—+oo @
Ezxzample 30. Let us show that
—-1/z
lim £ —— =0

Ryd>z—0 ¢
for @ > 1 and any o € R, that is, a=/* = o(2%) as z — 0, = € R;..

Proof. Setting x = —1/t in this case and using the theorem on the limit of a
composite function and the result of the preceding example, we find

a—l/z to

lim = lim —=0.0
Ry3z—0 ¢ t—+oo at

Example 81. Let us show that

. log, x
lim Ea
z—+oo ¢

=0

for a > 0, that is, for any positive exponent o we have log, z = o(z®) as
T — +00.

Proof. If a > 1, we set © = at/*. Then by the properties of power functions
and the logarithm, the theorem on the limit of a composite function, and the
result of Example 29, we find

! t/«a 1 t
lim 28e® _ o, W) 1oty
z—o+oo0 & t=+4oo at o t=+oo at

If 0 < a < 1, then 1/a > 1, and after the substitution z = a~/*, we
obtain

lim %8a® _ g (W) 1o, ¢

z—+oo % t=+co a-t @ t=too (1/a)t =0.0

Ezample 32. Let us show further that
z%log,z =0(l) asz = 0, z € Ry

for any o > 0.



3.2 The Limit of a Function 141

Proof. We need to show that lim z*log, z = 0 for & > 0. Setting z = 1/t

Ry 3z—0
and applying the theorem on the limit of a composite function and the result
of the preceding example, we find

lim xo‘loga:c=t_l§m w=_ lim IOg—“t=(). 0O

R4 3z—0 +o0 [Ad t—+oo t

Definition 23. Let us agree that the notation f §O(g) or f = O(g) over

the base B (read “f is big-oh of g over B”) means that the relation f(z) =
B(z)g(z) holds ultimately over B where ((x) is ultimately bounded over B.

In particular f = O(1) means that the function f is ultimately bounded

over B.
Ezample 33. (1 +sinz)z = O(z) as z — co.

Definition 24. The functions f and g are of the same order over B, and we
write f < g over B, if f ?0(9) and f = O(f) simultaneously.

Ezample 84. The functions (2+sin z)z and z are of the same order as z — oo,
but (1 + sinz)z and z are not of the same order as x — 0.

The condition that f and g be of the same order over the base B is
obviously equivalent to the condition that there exist ¢; > 0 and ¢z > 0 and
an element B € B such that the relations

cilg(@)| < |f(@)] < ezlg (@)

hold on B, or, what is the same,
1 1
—|f(@)] < lg(@)] < —[f()] -
Co (5]

Definition 25. If the relation f(z) = ~v(z)g(z) holds ultimately over B
- where lilrsn ~v(z) = 1, we say that the function f behaves asymptotically like g

over B, or, more briefly, that f is equivalent to g over B.

In this case we shall write f z9or f ~ g over B.
The use of the word equivalent is justified by the relations

(f 1)
(fyg)=(93f),
(fya)Algyh) = (Fyh) -
Indeed, the relation f 3 f is obvious, since in this case y(z) = 1. Next, if

. _ . 1 ) _ 1
hlrsn'y(x) = 1, then 111131’1 7@ = 1 and g(x) = ,Y—(x;f(a:) Here all we that need
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to explain is why it is permissible to assume that v(z) # 0. If the relation
f(z) = v(z)g(z) holds on B; € B, and 1 < |y(z)| < 2 on B; € B, then we
can take B € B with B C B; N By, on which both relations hold. Outside
of B, if convenient, we may assume that y(z) = 1. Thus we do indeed have

(f~g)= (g~ )

Finally, if f(z) = 71(z)g(z) on B; € B and g(z) = y2(z)h(z) on B; € B,
then on an element B € B such that B C B; N Bsy, both of these relations hold
simultaneously, and so f(z) = v1(z)y2(z)h(z) on B. But lilrsn'yl(x)'yz(x) =
lién v (z) - lién ~v2(z) = 1, and hence we have verified that f 3 h.

It is useful to note that since the relation lién ~v(z) = 1 is equivalent to
v(z) = 1+ a(z), where liérl a(z) = 0, the relation frgg is equivalent to
f(z) = g(z) + a(z)g(z) = g(z) + o(g(z)) over B.

We see that the relative error |a(z)| = 'ﬂxg)(;—g(z)' in approximating f(z)
by a function g(z) that is equivalent to f(x) over B is infinitesimal over B.

Let us now consider some examples.

Ezample 85. 2® +z = (1+ 1)2? ~ 2% as ¢ — oo.

The absolute value of the difference of these functions
|(z® + z) — 2?| = |z

tends to infinity. However, the relative error |;—2| = |71| that results from re-
placing z2 4+ = by the equivalent function z? tends to zero as  — co.

Ezample 36. At the beginning of this discussion we spoke of the famous
asymptotic law of distribution of the prime numbers. We can now give a
precise statement of this law:

z z
”(a’)_m“(ﬁ{;) as x — 400.

Ezample 87. Since lim $2Z = 1, we have sinz ~ z as £ — 0, which can also
z—0 % ’ ’

be written as sinz = z + o(z) as z — 0.

Ezample 38. Let us show that In(1 +z) ~ z as z — 0.
Proof.

In(1
lim —n( +2)

= limIn(1+2)"/* =In(lim(1+2)/*) =lne=1.
z—0 x z—0 0

T

Here we have used the relation log,(b*) = alog, b in the first equality and
the relation linll) log, t = log, b = log, (%m; t) in the second. O
— —

Thus, In(1+2z) =z + o(z) as z — 0.
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Example 39. Let us show that e =1+ z + o(z) as z — 0.
Proof.

.oeT—-1 . t
lim =lim —— =
z-0 T t—0 In(1 + t)

Here we have made the substitution z = In(1 +t), € — 1 = ¢ and used the
relations e — €% = 1 as ¢ — 0 and e® # 1 for z # 0. Thus, using the
theorem on the limit of a composite function and the result of the preceding
example, we have proved the assertion. O

Thus, e* — 1~z asz — 0.

Ezample 40. Let us show that (1 +z)* =1+ az + o(z) as z — 0.
Proof.

o (+z)e -1 e 1 aln(l+az)
lim —— = lim =
50 x z—=0 «aln(l + z) T
et — In(1
= alim 1-lim n( +x)=
t—0 ¢ z—0 x

In this computation, assuming o # 0, we made the substitution aIn(1+z) = ¢
and used the results of the two preceding examples.
If o = 0, the assertion is obvious. 0O

Thus, (1+2z)* -1~ az asz — 0.
The following simple fact is sometimes useful in computing limits.

Proposition 3. Iff?;f, then lién f(x)g(z) = lién f(w)g(a:), provided one of

these limits exists.

Proof. Indeed, given that f(z) = v(z)f(z) and lién v(z) = 1, we have

lim f(2)g(z) = lim¥(2) f()g(x) = lim(2) - lim f(2)g(2) = lim f(z)g(z) . O

Example 41.
Incosz 1 Incos?z 1. In(1—sin’z)
im ——— = = lim = = lim =
2—0 sin(z2) 220 22 2 20 2
1. —sin’z 1 z? 1
= < lim = ClmZ =2,
2z0 2 2 bt z2 2

Here we have used the relations In(1+ o) ~aasa — 0, sinz ~z asz — 0,

1 1 . 2 2
Pyl ﬁasﬂ—>0,andsm z~zx*asz — 0.
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We have proved that one may replace functions by other functions equiv-
alent to them in a given base when computing limits of monomials. This rule
should not be extended to sums and differences of functions.

Ezample 42. Vx2 +z ~ z as ¢ — +oo, but

lim (Va2+z—x)# lim (zx—2)=0.

z—+00
In fact,
, T hm o ® o L1
Jm (Va? +2 - 2) e VT st s st 14141 2
x

We note one more widely used rule for handling the symbols o(-) and O(-)
in analysis.

Proposition 4. For a given base
a) o(f) + o(f) = o(f);
b) o(f) is also O(f);
¢) o(f) + O(f) = O(f);
@) O(f) + O(f) = O(f);

. T x O(f(z T
e) if g(x) # 0, then O(Qf((x))) = o(%) and (gj(ci))) = O(%).

Notice some peculiarities of operations with the symbols o(-) and O(:)
that follow from the meaning of these symbols. For example 2o(f) = o(f)
and o(f)+O0(f) = O(f) (even though in general o( f) # 0); also, o(f) = O(f),
but O(f) # o(f). Here the equality sign is used in the sense of “is”. The sym-
bols o(-) and O(-) do not really denote a function, but rather indicate its
asymptotic behavior, a behavior that many functions may have simultane-
ously, for example, f and 2f, and the like.

Proof. a) After the clarification just given, this assertion ceases to appear
strange. The first symbol o(f) in it denotes a function of the form a; (z) f(z),
where lizrgn a1(z) = 0. The second symbol o(f), which one can (or should)

equip with some mark to distinguish it from the first, denotes a function of
the form aq(z)f(z), where lizrgn as(z) = 0. Then a;(z)f(z) + az(z)f(z) =

(0a(2) + 02(2)) £ (z) = a5(2)f (), where lim x5 () = 0.

Assertion b) follows from the fact that any function having a limit is
ultimately bounded.

Assertion c) follows from b) and d).

Assertion d) follows from the fact that the sum of ultimately bounded
functions is ultimately bounded.

olf (=) _ a(=x)f(z) _

As for e), we have =/r5= = = r3= = alz) =

The second part of assertion e) is verified similarly. O
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Using these rules and the equivalences obtained in Example 40, we can
now find the limit in Example 42 by the following direct method:

im _ (Va? +z-2) =z§rgww<\/1+§—1) _
(b Aol ) - (o) -
=xliyr-|1:100 (%—1—0(1)) = %

We shall soon prove the following important relations, which should be
memorized at this point like the multiplication table:

1 1 1
ex=1+Fm+512+-~-+E:ﬂ"+--- forzeR,
1 1 —1)*
cosx=1—5m2+5m4+~~+((273!932k+"' forzeR,
.1 1 3 (-D* i1
Sln.’li—ﬁfl‘_iw +...+mx +..- forzeR,
1 2 1 3 (_1)71—1 n
1n(1+x)=a:—§:v +§a: +~~+T$ + .- forfz| <1,
-1
(1+x)°‘=1+%x+a(a—2,—)12+“‘+
+°‘(°‘_1)"T'l'(a_n+1):c"+mforla:|<1.

On the one hand, these relations can already be used as computational for-
mulas, and on the other hand they contain the following asymptotic formulas,
which generalize the formulas contained in Examples 37-40:

1 1 1
e”=1+ﬁw+ﬁw2+m+-ﬁ—!a¢"+0(z"+l) asz—0,
cosx =1—lw2+lx4+---+ﬂzzk—l-O(z%”) asz — 0
T 2h)! ’
sinx = ix— lmS 44 ﬂz%“ +O(m2k+3) asz — 0
TR @k + 1) ’
. 1o 13 (=t . n+1
In(l+z) == 23: +3a: 4+t ———x +O(:v ) asz—0,
~1
Q4o =14 %120V

1! 2!
—1)(a—
+a(a ) '(a n+1)z"+0(a¢"+l) asz — 0.
n!
These formulas are usually the most efficient method of finding the limits of

the elementary functions. When doing so, it is useful to keep in mind that
O(zm*!) = zm+1 . O(1) = 2™ - zO(1) = 2™0o(1) = o(z™) as z — 0.
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In conclusion, let us consider a few examples showing these formulas in
action.

Example 43.
. z-sinz . z—(z—52®+0(%) 1 o) 1
Jimy = = lim = = lim (57 +0@") = 3; -

Ezample 44. Let us find

As z — oo we have:

x3+w=1+x‘2:(1+%)<1+_)—1=
(

1423 1423
1 1 1 1 1
=(1+3) (- 5+o(H) =1+ m+o(5)

T T T
3 1/7
[T+ ( 1 1))/ 1 1 1)
1/ = = = —14=.— il
1428 1+m2+0(:c3 +7 m2+0 z3/)’
1 1 1 1
cos 2 =1-55+0(5)

from which we obtain

3+ 1 9 1 1
T 23 —cos;=-1—4';+0(-13) as r — 0.

Hence the required limit is

xllnéowz(14i2 +O<%)) = % '

Ezxample 45.

dim [ 2) T = dm o {a(im (145) 1)} =

= lim exp {:czln <1+ i) _g;} =

T—r00
-t o g 0(%) -2} -

= lim exp{—%-l—O(%)} =e /2,

r—00
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3.2.5 Problems and Exercises

1. a) Prove that there exists a unique function defined on R and satisfying the
following conditions:

f)=a (a>0,a#1),
f(x1) - f(z2) = f(z1 +22)

f(z) = f(zo) as z — zo .

b) Prove that there exists a unique function defined on Ry and satisfying the
following conditions:

fla)=1 (a>0,a#1),
f(x1) + f(z2) = f(z1 - z2) ,

f(x) = f(zo) forzo e Ry and Ry Dz — xo .

Hint: Look again at the construction of the exponential function and logarithm
discussed in Example 10.

2. a) Establish a one-to-one correspondence ¢ : R — R4 such that p(z + y) =
p(z) - p(y) for any z,y € R, that is, so that the operation of multiplication in the
image (R4) corresponds to the operation of addition in the pre-image (R). The
existence of such a mapping means that the groups (R, +) and (R4, -) are identical
as algebraic objects, or, as we say, they are isomorphic.

b) Prove that the groups (R,+) and (R\ 0,-) are not isomorphic.

3. Find the following limits.

a) lim z%
z—+0

b) lim z/%;

T —>+00

c) lim '8aU+7),
z—0 z

d) lim &=

z—0

4. Show that

1+%+---+%=1nn+c+o(l)asn—>oo,

where c is a constant. (The number ¢ = 0.57721... is called Euler’s constant.)
Hint: One can use the relation

ln—n-'_1 =ln(1+l) =l+0(l2> asn — 00 .
n n n n
5. Show that

a) if two series z an and E bn with positive terms are such that a, ~ b, as

=1
n — 00, then the two series elther both converge or both diverge;

b) the series Z sin & converges only for p > 1.
n=1
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6. Show that

[o <]
a) if an > ant1 > 0 for all » € N and the series Y an converges, then

n=1

Qan =0(%) as n — 005

fod
b) if b, = o(%) , one can always construct a convergent series Y an such that
n=1
bn = o(an) as n — oo;

o0 o0
c) if a series Y an with positive terms converges, then the series Y An, where

n=1 n=1

00 o0
An=4/> ar— >~ ai also converges, and a, = 0(An) as n — oo;
k=n k=n+1

00 fod
d) if a series Y an with positive terms diverges, then the series > A,, where

n=1 n=2
n n—1
> ak — 4/ > ax also diverges, and A, = o(an) as n — oco.
k=1 k=1

It follows from c) and d) that no convergent (resp. divergent) series can serve as
a universal standard of comparison to establish the convergence (resp. divergence)
of other series.

An

7. Show that

o0
a) the series ) Inan, where an, > 0, n € N, converges if and only if the sequence
n=1
{II, = a1 ---an} has a finite nonzero limit.

o0
b) the series > In(1 + ay), where |an| < 1, converges absolutely if and only if
n=1

o0
the series ) an converges absolutely.
n=1

Hint: See part a) of Exercise 5.

o0
8. An infinite product [] ex is said to converge if the sequence of numbers
k=1

n o0
II, = T] ex has a finite nonzero limit /7. We then set IT = [] ex.
k=1 k=1
Show that
o0
a) if an infinite product [] e, converges, then e, — 1 as n — oo;
n=1
oo
b) if Vn € N (e, > 0), then the infinite product [] e. converges if and only if
n=1

o0
the series ) Ine, converges;
n=1
¢) if e, = 1+ an and the a, are all of the same sign, then the infinite product
oo [es]
IT (1 + ax) converges if and only if the series Y @, converges.

n=1 n=1
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oo
9. a) Find the product [] (1+2*"71).
n=1

o0
b) Find [] cos 2% and prove the following theorem of Viéte'*
n=1

T _ 1
2 '
. 1 /1 1 1 1 1. /1 1 1
\/;. §+§\/;‘ §+§ §+§\/;“'

c) Find the function f(z) if

fo)=1,
f2z) = cos’z - flz),
flz) = f(0)asz—0.

Hint:z=2-3.

10. Show that

o0
a) if b—bfr—l- =1+ Bn, n =1,2,..., and the series Y. B, converges absolutely,
n n=1

then the limit lim b, = b € R exists;
n—oo

o0
b) if a—"f’; =1+2+a,,n=1,2,..., and the series ) an converges absolutely,
n n=1
then an ~ -5 as n — o0;

o0 o0
c) if the series ) an is such that a—al_‘!_ul— =1+ 2 + a, and the series ) an
n=1 " n=1
o0
converges absolutely, then ) a, converges absolutely for p > 1 and diverges for

n=1
p <1 (Gauss’ test for absolute convergence of a series).

11. Show that

n—o0 an

Tm (—”“"“) > e

for any sequence {a,} with positive terms, and that this estimate cannot be im-
proved.

14 F. Viete (1540-1603) — French mathematician, one of the creators of modern
symbolic algebra.






4 Continuous Functions

4.1 Basic Definitions and Examples

4.1.1 Continuity of a Function at a Point

Let f be a real-valued function defined in a neighborhood of a point a € R. In
intuitive terms the function f is continuous at a if its value f(z) approaches
the value f(a) that it assumes at the point a itself as z gets nearer to a.

We shall now make this description of the concept of continuity of a
function at a point precise.

Definition 0. A function f is continuous at the point a if for any neighbor-
hood V'(f(a)) of its value f(a) at a there is a neighborhood U(a) of a whose

image under the mapping f is contained in V(f (a)).

We now give the expression of this concept in logical symbolism, along with
two other versions of it that are frequently used in analysis.

(f is continuous at a) := (YV(f(a)) 3U(a) (f(U(a)) C V(f(a)))),
Ve > 03U(a)Vz € U(a) (|f(z) — f(a)| <€),
Ve>030>0Vz eR(|Jz —a| <& =|f(z) — f(a)| <¢) .

The equivalence of these statements for real-valued functions follows from
the fact (already noted several times) that any neighborhood of a point con-
tains a symmetric neighborhood of the point.

For example, if for any e-neighborhood V¢(f(a)) of f(a) one can choose
a neighborhood U(a) of a such that Vz € U(a) (|f(z) — f(a)| < €), that
is, f (U (a)) c Ve(f (a)), then for any neighborhood V( f(a)) one can also
choose a corresponding neighborhood of a. Indeed, it suffices first to take
an e-neighborhood of f(a) with V¢(f(a)) C V(f(a)), and then find U(a)
corresponding to V¢(f(a)). Then f(U(a)) C V¢(f(a)) C V(f(a)).

Thus, if a function is continuous at a in the sense of the second of these
definitions, it is also continuous at a in the sense of the original definition.
The converse is obvious, so that the equivalence of the two statements is
established.

We leave the rest of the verification to the reader.
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To avoid being distracted from the basic concept being defined, that of
continuity at a point, we assumed for simplicity to begin with that the func-
tion f was defined in a whole neighborhood of a. We now consider the general
case.

Let f: E — R be a real-valued function defined on some set £ C R and
a a point of the domain of definition of the function.

Definition 1. A function f : E — R is continuous at the point a € E if for
every neighborhood V' (f(a)) of the value f(a) that the function assumes at
a there exists a neighborhood Ug(a) of a in E* whose image f(Ug(a)) is
contained in V(f(a)).

Thus

(f : E — R is continuous at a € E) :=

= (YW (f(a)) IUz(a) (f(Us(a)) C V(f(a))) -

Of course, Definition 1 can also be written in the e-é-form discussed above.
Where numerical estimates are needed, this will be useful, and even necessary.
We now write these versions of Definition 1.

(f : E — R is continuous at a € E) :=
= (Ve > 03Ug(a)Vz € Ug(a) (|f(z) — f(a)| <€),

or

(f : E — R is continuous at a € E) :=
=(Ve>036>0Vz € E(jlz—a| <d=|f(z) - fla) <€),

We now discuss in detail the concept of continuity of a function at a point.

1° If @ is an isolated point, that is, not a limit point of E, there is a
neighborhood U(a) of a containing no points of E except a itself. In this case
Uk(a) = a, and therefore f(Ug(a)) = f(a) C V(f(a)) for any neighborhood
V( f (a)). Thus a function is obviously continuous at any isolated point of its
domain of definition. This, however, is a degenerate case.

20 The substantive part of the concept of continuity thus involves the case
when a € E and a is a limit point of E. It is clear from Definition 1 that

(f : E — R is continuous at a € E , where a is a limit point of F) <
& (lim f(@)=f().

Proof. In fact, if a is a limit point of E, then the base £ > z — a of deleted
neighborhoods Ug(a) = Ug(a) \ a of a is defined.

I We recall that Uz(a) = E N U(a).
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If f is continuous at a, then, by finding a neighborhood Ug(a) for
the neighborhood V'(f(a)) such that f(Ug(a)) C V(f(a)), we will si-

multaneously have f ([}E(a)) C V(f(a)). By definition of limit, therefore,
Jim_f(z) = f(a).

Conversely, if we know that Eéim f(z) = f(a), then, given a neighbor-
T—ra

hood V'(f(a)), we find a deleted neighborhood Uo'E(a) such that f( ﬁE(a)) C
V(f(a)). But since f(a) € V(f(a)), we then have also f(Ug(a)) C V(f(a)).
By Definition 1 this means that f is continuous at a € E. O

30 Since the relation lim f(z) = f(a) can be rewritten as
E>z—a

lim f(z)=f( lim z),

E>z—a Es>z—a

we now arrive at the useful conclusion that the continuous functions (opera-
tions) and only the continuous ones commute with the operation of passing
to the limit at a point. This means that the number f(a) obtained by carry-
ing out the operation f on the number a can be approximated as closely as
desired by the values obtained by carrying out the operation f on values of
z that approximate a with suitable accuracy.

4% If we remark that for a € E the neighborhoods Ug(a) of a form a
base B, (whether a is a limit point or an isolated point of E), we see that
Definition 1 of continuity of a function at the point a is the same as the
definition of the statement that the number f(a) — the value of the function
at a — is the limit of the function over this base, that is

(f : E — R is continuous at a € F) & (lzgmf(x) = f(a)) .

5% We remark, however, that if I}Sm f(z) exists, since a € Ug(a) for every

neighborhood Ug(a), it follows that this limit must necessarily be f(a).
Thus, continuity of a function f : E — R at a point a € E is equivalent to
the existence of the limit of this function over the base B, of neighborhoods
(not deleted neighborhoods) Ug(a) of a € E.
Thus

(f : E— Ris continuous at a € E) < (3 ligm f(=)) .

69 By the Cauchy criterion for the existence of a limit, we can now say that
a function is continuous at a point @ € E if and only if for every € > 0 there
exists a neighborhood Ug(a) of a in E on which the oscillation w(f; Ug(a))
of the function is less than e.

Definition 2. The quantity w(f;a) = 6lir£0w( f;U&(a)) (where UZ(a) is the
—
é-neighborhood of @ in E) is called the oscillation of f : E — R at a.
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Formally the symbol w(f; X) has already been taken; it denotes the os-
cillation of the function on the set X. However, we shall never consider the
oscillation of a function on a set consisting of a single point (it would obvi-
ously be zero); therefore the symbol w(f;a), where a is a point, will always
denote the concept of oscillation at a point just defined in Definition 2. -

The oscillation of a function on a subset of a set does not exceed its
oscillation on the set itself, so that w(f; Ug(a)) is a nondecreasing function
of 4. Since it is nonnegative, either it has a finite limit as § — +0, or else
w(f;UL(a)) = 4oo for every 6 > 0. In the latter case we naturally set
w(f;a) = +oo.

7% Using Definition 2 we can summarize what was said in 6° as follows: a
function is continuous at a point if and only if its oscillation at that point is
zero. Let us make this explicit:

(f : E— Ris continuous at a € E) & (w(f;a) =0) .

Definition 3. A function f : £ — R is continuous on the set E if it is
continuous at each point of F.

The set of all continuous real-valued functions defined on a set E will be
denoted C(E;R) or, more briefly, C(F).

We have now discussed the concept of continuity of a function. Let us
consider some examples.

Ezample 1. If f : E — R is a constant function, then f € C(FE). This is
obvious, since f(E) = ¢ C V(¢), for any neighborhood V'(c) of ¢ € R.
Ezample 2. The function f(z) = z is continuous on R. Indeed, for any point
zo € R we have |f(z) — f(zo)| = |z — zo] < € provided |z — zo| < § = €.

Ezample 3. The function f(z) = sinz is continuous on R.
In fact, for any point o € R we have

T+ x9 .nx—xo'
2

< 2’sin

|sinz — sin zg| = ’2cos

2
$—$0‘<2‘$—$0‘=
2 —_ I

5 T —x0| <€,

provided |z — zo| < § = €.
Here we have used the inequality |sinz| < |z| proved in Example 9 of
Paragraph d) of Subsect. 3.2.2.

Ezample 4. The function f(z) = cosz is continuous on R.
Indeed, as in the preceding example, for any point o € R we have

T+To . az—avo‘
sin <
2 2
.z
52‘sm

| cos z — coszp| = | — 2sin

2

x
0‘§|1:—aco|<e,

provided |z — zo| < § = €.
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Ezample 5. The function f(z) = a® is continuous on R.
Indeed by property 3) of the exponential function (see Par. d in Sub-
sect. 3.2.2, Example 10a), at any point zo € R we have

lim a® = a® ,
T—rTo
which, as we now know, is equivalent to the continuity of the function a® at

the point xg.

Fzample 6. The function f(z) = log, z is continuous at any point zg in its
domain of definition Ry = {z € R|z > 0}.

In fact, by property 3) of the logarithm (see Par. d in Subsect. 3.2.2,
Example 10b), at each point zo € R, we have

lim log,x =log, zo ,
]R+3:D—):Eo

which is equivalent to the continuity of the function log, z at the point zo.
Now, given € > 0, let us try to find a neighborhood Ug, () of the point
o So as to have
|log, x — log, zo| < €

at each point = € Ug, (o).
This inequality is equivalent to the relations

e <lo a: <e
gaxo .

For definiteness assume a > 1; then these last relations are equivalent to
Toa " < x < x00° .

The open interval |zoa™¢, zoa®| is the neighborhood of the point z¢ that
we are seeking. It is useful to note that this neighborhood depends on both
€ and the point g, a phenomenon that did not occur in Examples 1-4.

Ezample 7. Any sequence f : N — R is a function that is continuous on the
set N of natural numbers, since each point of N is isolated.

4.1.2 Points of Discontinuity

To improve our mastery of the concept of continuity, we shall explain what
happens to a function in a neighborhood of a point where it is not continuous.

Definition 4. If the function f : F — R is not continuous at a point of F,
this point is called a point of discontinuity or simply a discontinuity of f.
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By constructing the negation of the statement “the function f : E — R
is continuous at the point a € E”, we obtain the following expression of the
definition of the statement that a is a point of discontinuity of f:

(a € E is a point of discontinuity of f) :=
= (3V(f(a)) VUE(a) 3z € Ug(a) (f(z) ¢ V(f()))) -

In other words, a € E is a point of discontinuity of the function f : E —» R
if there is a neighborhood V (f(a)) of the value f(a) that the function assumes
at a such that in any neighborhood Ug(a) of a in E there is a point  whose
image is not in V' (f(a)).

In e-§-form, this definition has the following appearance:

Je>0V6>03z € E(lz —a| <5 A|f(z) — fla) =€) .
Let us consider some examples.

Ezample 8. The function f(z) = sgnz is constant and hence continuous in
the neighborhood of any point ¢ € R that is different from 0. But in any
neighborhood of 0 its oscillation equals 2. Hence 0 is a point of discontinuity
for sgn . We remark that this function has a left-hand limit wl_i)mo sgnz = —1

and a right-hand limit li@ sgnx = 1. However, in the first place, these limits
z—

are not the same; and in the second place, neither of them is equal to the
value of sgnz at the point 0, namely sgn 0 = 0. This is a direct verification
that 0 is a point of discontinuity for this function.

Ezample 9. The function f(z) = |sgnz| has the limit li_l’)% |sgnz| = 1 as
x
z — 0, but f(0) = |sgn0| = 0, so that li_r)r%) f(z) # f(0), and 0 is therefore a
x
point of discontinuity of the function.
We remark, however, that in this case, if we were to change the value of

the function at the point 0 and set it equal to 1 there, we would obtain a
function that is continuous at 0, that is, we would remove the discontinuity.

Definition 5. If a point of discontinuity a € E of the function f: E — R
is such that there exists a continuous function f : E — R such that f | B\a =

f | F\a’ then a is called a removable discontinuity of the function f.

Thus a removable discontinuity is characterized by the fact that the limit
lim f(z)= A exists, but A # f(a), and it suffices to set

E>xz—a
_ f(x)forze E,z#a,
f(z) =

A forxz=a,

in order to obtain a function f : E — R that is continuous at a. -
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Example 10. The function

1
sin; , forz#0,

fz) =
0, forz=0,

is discontinuous at 0. Moreover, it does not even have a limit as x — 0,
since, as was shown Example 5 in Subsect. 3.2.1, lir% sin% does not exist.
r—>

The graph of the function sin% is shown in Fig. 4.1.

Fig. 4.1.

Examples 8, 9, and 10 explain the following terminology.

Definition 6. The point a € E is called a discontinuity of first kind for the
function f : E — R if the following limits? exist:
polm f(z) =: f(afO), gl f(z) = fla+0),

but at least one of them is not equal to the value f(a) that the function
assumes at a.

Definition 7. If a € E is a point of discontinuity of the function f : £ — R
and at least one of the two limits in Definition 6 does not exist, then a is
called a discontinuity of second kind.

Thus what is meant is that every point of discontinuity that is not a
discontinuity of first kind is automatically a discontinuity of second kind.
Let us present two more classical examples.

2 If a is a discontinuity, then a must be a limit point of the set E. It may happen,
however, that all the points of E in some neighborhood of a lie on one side of a.
In that case, only one of the limits in this definition is considered.
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Ezxample 11. The function

1,ifze@Q,
D(z) =
0,ifzeR\Q,

is called the Dirichlet function®

This function is discontinuous at every point, and obviously all of its dis-
continuities are of second kind, since in every interval there are both rational
and irrational numbers.

Ezample 12. Consider the Riemann function*

% ,ifx =" €Q, where 7 is in lowest terms.
R(z) =
0,ifzeR\Q.

We remark that for any point a € R, any bounded neighborhood U(a) of
it, and any number N € N, the neighborhood U(a) contains only a finite
number of rational numbers 7, m € Z, n € N, with n < N.

By shrinking the neighborhood, one can then assume that the denomi-
nators of all rational numbers in the neighborhood (except possibly for the

o
point a itself if a € Q) are larger than N. Thus at any point z € U(a) we
have |R(z)| < 1/N.
We have thereby shown that

lim R(z) =0

Tr—a
at any point a € R\ Q. Hence the Riemann function is continuous at any irra-
tional number. At the remaining points, that is, at points z € Q, the function
is discontinuous, except at the point £ = 0, and all of these discontinuities
are discontinuities of first kind.

4.2 Properties of Continuous Functions

4.2.1 Local Properties

The local properties of functions are those that are determined by the be-
havior of the function in an arbitrarily small neighborhood of the point in its
domain of definition.

3 P.G. Dirichlet (1805-1859) — great German mathematician, an analyst who oc-
cupied the post of professor ordinarius at Gottingen University after the death
of Gauss in 1855.

4 B.F.Riemann (1826-1866) — outstanding German mathematician whose ground-
breaking works laid the foundations of whole areas of modern geometry and
analysis.



4.2 Properties of Continuous Functions 159

Thus, the local properties themselves characterize the behavior of a func-
tion in any limiting relation when the argument of the function tends to the
point in question. For example, the continuity of a function at a point of its
domain of definition is obviously a local property.

We shall now exhibit the main local properties of continuous functions.

Theorem 1. Let f : E — R be a function that is continuous at the point
a € E. Then the following statements hold.

19 The function f : E — R is bounded in some neighborhood Ug(a) of a.

20 If f(a) # 0, then in some neighborhood Ug(a) all the values of the
function have the same sign as f(a).

30 If the function g : Ug(a) — R is defined in some neighborhood of a
and, like f, is continuous at a, then the following functions are defined in
some neighborhood of a and continuous at a:

a) (f +9)(z) = f(z) + g(2),
b) (- 9)(z) := f(z) - 9(2),
c) (5)(3:) = % (provided g(a) # 0).

40 If the function g : Y — R is continuous at a point b € Y and f is
such that f : E =Y, f(a) =b, and f is continuous at a, then the composite
function (g o f) is defined on E and continuous at a.

Proof. To prove this theorem it suffices to recall (see Sect. 4.1) that the
continuity of the function f or g at a point a of its domain of definition
is equivalent to the condition that the limit of this function exists over the
base B, of neighborhoods of a and is equal to the value of the function at a:
lim £ (z) = £(a), limg(z) = 9(0).

Thus assertions 1°, 2°, and 3° of Theorem 1 follow immediately from
the definition of continuity of a function at a point and the corresponding
properties of the limit of a function. “

x

The only explanation required is to verify that the ratio @) is actually

defined in some neighborhood U, £(a) of a. But by hypothesis g(a) # 0, and
by assertion 20 of the theorem there exists a neighborhood U. e(a) at every
point of which g(z) # 0, that is, % is defined in Ug(a).

Assertion 4° of Theorem 1 is a consequence of the theorem on the limit
of a composite function, by virtue of which

lim(g o f)(z) = limg(y) = ¢(b) = 9(f(a)) = (go f)(a),

which is equivalent to the continuity of (g o f) at a.

However, to apply the theorem on the limit of a composite function, we
must verify that for any element Uy (b) of the base B, there exists an element
Ug(a) of the base B, such that f(Ug(a)) C Uy (b). But in fact, if Uy (b) =
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Y NU(b), then by definition of the continuity of f : E — Y at the point a,
given a neighborhood U(b) = U(f(a)), there is a neighborhood Ug(a) of a in
E such that f(Ug(a)) C U(f(a)). Since the range of f is contained in Y, we
have f(Ug(a)) C YNU(f(a)) = Uy (b), and we have justified the application
of the theorem on the limit of a composite function. O

Ezample 1. An algebraic polynomial P(z) = apz™ + a1z ' +---+a, is a
continuous function on R.

Indeed, it follows by induction from 3° of Theorem 1 that the sum and
product of any finite number of functions that are continuous at a point are
themselves continuous at that point. We have verified in Examples 1 and 2 of
Sect. 4.1 that the constant function and the function f(z) = z are continuous
on R. It then follows that the functions az™ = a-z-... -z are continuous,

m factors
and consequently the polynomial P(z) is also.

Ezample 2. A rational function R(z) = ggzg — a quotient of polynomials — is

continuous wherever it is defined, that is, where Q(z) # 0. This follows from
Example 1 and assertion 3° of Theorem 1.

Example 8. The composition of a finite number of continuous functions is
continuous at each point of its domain of definition. This follows by induction
from assertion 4° of Theorem 1. For example, the function gsin®(In| cos ) jg
continuous on all of R, except at the points 7 (2k + 1), k € Z, where it is not
defined.

4.2.2 Global Properties of Continuous Functions

A global property of a function, intuitively speaking, is a property involving
the entire domain of definition of the function.

Theorem 2. (The Bolzano—Cauchy intermediate-value theorem). If a func-
tion that is continuous on a closed interval assumes values with different signs
at the endpoints of the interval, then there is a point in the interval where it
assumes the value 0.

In logical symbols, this theorem has the following expression.®

(f € Cla,b] A f(a) - F(b) <0) = 3c€ [a,b] (f(c) =0) .

Proof. Let us divide the interval [a, b] in half. If the function does not assume
the value 0 at the point of division, then it must assume opposite values at
the endpoints of one of the two subintervals. In that interval we proceed as we
did with the original interval, that is, we bisect it and continue the process.

5 We recall that C(F) denotes the set of all continuous functions on the set E. In
the case E = [a,b] we often write, more briefly, C|a, b] instead of C([a,b]).
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Then either at some step we hit a point ¢ € [a,b] where f(c) = 0, or
we obtain a sequence {I,} of nested closed intervals whose lengths tend to
zero and at whose endpoints f assumes values with opposite signs. In the
second case, by the nested interval lemma, there exists a unique point ¢ €
[a,b] common to all the intervals. By construction there are two sequences
of endpoints {z,} and {z/} of the intervals I, such that f(z]) < 0 and
f(z}) > 0, while lim z), = lim z!! = ¢. By the properties of a limit and

n—o00 n—o0
the definition of continuity, we then find that nll)rr;o f(zh,) = f(e) <0 and
Jlim f(zn) = f(c) > 0. Thus f(c)=0. O

Remarks to Theorem 2 1° The proof of the theorem provides a very
simple algorithm for finding a root of the equation f(z) = 0 on an interval at
whose endpoints a continuous function f(z) has values with opposite signs.

20 Theorem 2 thus asserts that it is impossible to pass continuously from
positive to negative values without assuming the value zero along the way.

3% One should be wary of intuitive remarks like Remark 2°, since they usually
assume more than they state. Consider, for example, the function equal to
—1 on the closed interval [0, 1] and equal to 1 on the closed interval [2, 3]. It is
clear that this function is continuous on its domain of definition and assumes
values with opposite signs, yet never assumes the value 0. This remark shows
that the property of a continuous function expressed by Theorem 2 is actually
the result of a certain property of the domain of definition (which, as will be
made clear below, is the property of being connected.)

Corollary to Theorem 2. If the function ¢ is continuous on an open in-
terval and assumes values p(a) = A and ¢(b) = B at points a and b, then for
any number C between A and B, there is a point ¢ between a and b at which

p(c)=C.

Proof. The closed interval I with endpoints a and b lies inside the open
interval on which ¢ is defined. Therefore the function f(z) = ¢(z) — C is
defined and continuous on I. Since f(a)- f(b) = (A—C)(B-C) < 0, Theorem
2 implies that there is a point ¢ between a and b at which f(¢) = p(c)—C = 0.
O

Theorem 3. (The Weierstrass maximum-value theorem). A function that is
continuous on a closed interval is bounded on that interval. Moreover there
is a point in the interval where the function assumes its maximum value and
a point where it assumes its minimal value.

Proof. Let f : E — R be a continuous function on the closed interval £ =
[a,b]. By the local properties of a continuous function (see Theorem 1) for
any point z € F there exists a neighborhood U(z) such that the function is
bounded on the set Ug(z) = ENU(z). The set of such neighborhoods U(zx)
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constructed for all z € E forms a covering of the closed interval [a,b] by
open intervals. By the finite covering lemma, one can extract a finite system
U(z1),...,U(zy,) of open intervals that together cover the closed interval
[a, b]. Since the function is bounded on each set E NU(xx) = Ug(zx), that
is, mg < f(z) < My, where my, and My, are real numbers and z € Ug(zx),
we have

min{my,...,mp} < f(z) < max{Mi,..., My}

at any point ¢ € E = [a,b]. It is now established that f(z) is bounded on
[a, b].
Now let M = sup f(z). Assume that f(z) < M at every point z € E.
z€E

Then the continuous function M — f(z) on E is nowhere zero, although (by the
definition of M) it assumes values arbitrarily close to 0. It then follows that
the function M+f(z) is, on the one hand, continuous on E because of the local
properties of continuous functions, but on the other hand not bounded on F,
which contradicts what has just been proved about a function continuous on
a closed interval.

Thus there must be a point s € [a, b] at which f(zp) = M.

Similarly, by considering m = ;Ielg f(z) and the auxiliary function f(a3)+m’

we prove that there exists a point z,, € [a,b] at which f(z,)=m. O

We remark that, for example, the functions fi(z) = z and fa(z) = 1 are
continuous on the open interval E = (0,1), but f has neither a maximal nor
a minimal value on E, and f5 is unbounded on E. Thus, the properties of
a continuous function expressed in Theorem 3 involve some property of the
domain of definition, namely the property that from every covering of E by
open intervals one can extract a finite subcovering. From now on we shall call
such sets compact. .

Before passing to the next theorem, we give a definition.

Definition 1. A function f : E — R is uniformly continuous on a set E C R
if for every & > 0 there exists § > 0 such that | f(z1)— f(z2)| < € for all points
z1, 22 € E such that |21 — 22| < 4.

More briefly,
(f : E — R is uniformly continuous ) :=
= (Vz-: > 036 >0Vz; € EVzy € E(l:cl —z3| <6 =
= |f(z1) — f(z2)| <€)
Let us now discuss the concept of uniform continuity.

10 If a function is uniformly continuous on a set, it is continuous at each
point of that set. Indeed, in the definition just given it suffices to set z; =z
and z2 = a, and we see that the definition of continuity of a function f :
E — R at a point a € F is satisfied.
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20 Generally speaking, the continuity of a function does not imply its
uniform continuity.

Ezample 4. The function f(z) = sin%, which we have encountered many
times, is continuous on the open interval ]0, 1[= E. However, in every neigh-
borhood of 0 in the set E the function assumes both values —1 and 1. There-
fore, for € < 2, the condition |f(z1) — f(z2)| < € does not hold.

In this connection it is useful to write out explicitly the negation of the
property of uniform continuity for a function:

(f : E = R is not uniformly continuous) :=
= (Je>0V6>03z; € ETzs € E(|z1 — 32| <A

Af(@1) = f@2)| 2 €)) -

This example makes the difference between continuity and uniform conti-
nuity of a function on a set intuitive. To point out the place in the definition
of uniform continuity from which this difference proceeds, we give a detailed
expression of what it means for a function f : E — R to be continuous on E:

(f : E — R is continuous on E :=
= (VaGEV€>036>OVmEE(|x—a| <& =|f(x) — f(a)] <€)) )

Thus the number § is chosen knowing the point a € E and the number
€, and so for a fixed € the number § may vary from one point to another, as
happens in the case of the function sin% considered in Example 1, or in the
case of the function log, « or a” studied over their full domain of definition.

In the case of uniform continuity we are guaranteed the possibility of
choosing ¢ knowing only € > 0 so that | — a| < ¢ implies |f(z) — f(a)| < €
forallz € F and a € E.

Example 5. If the function f : E — R is unbounded in every neighborhood
of a fixed point g € E, then it is not uniformly continuous.

Indeed, in that case for any § > 0 there are points z; and z3 in every
%—neighborhood of zg such that |f(z1) — f(x2)| > 1 although |z; — x2| < 4.
Such is the situation with the function f(z) = 1 on the set R\ 0. In this
case g = 0. The same situation holds in regard to log, =, which is defined
on the set of positive numbers and unbounded in a neighborhood of zg = 0.

Ezample 6. The function f(x) = x2, which is continuous on R, is not uni-
formly continuous on R.

In fact, at the points z, = v/n+ 1 and z], = \/n, where n € N, we have
f(z,) =n+1and f(z]!) =n, so that f(z),) — f(z!}) = 1. But

1
lim (Vn+1-+//n) = lim ——— =0,
n—)oo( \/_) n—00 ,/n+1+\/ﬁ

so that for any § > 0 there are points 2, and z, such that |z}, —z/.| < §, yet

flan) = fzn) = 1.
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Ezample 7. The function f(z) = sin(z?), which is continuous and bounded
on R, is not uniformly continuous on R. Indeed, at the points z;, = /5 (n + 1)
and z;, = \/Zn, where n € N, we have |f(z;,) — f(z7,)| = 1, while nll_)n;lo |zl —
zp| = 0.

After this discussion of the concept of uniform continuity of a function
and comparison of continuity and uniform continuity, we can now appreciate
the following theorem.

Theorem 4. (The Cantor-Heine theorem on uniform continuity). A func-
tion that is continuous on a closed interval is uniformly continuous on that
interval.

We note that this theorem is usually called Cantor’s theorem in the lit-
erature. To avoid unconventional terminology we shall preserve this common
name in subsequent references.

Proof. Let f : E — R be a given function, E = [a,b], and f € C(F). Since
f is continuous at every point z € E, it follows (see 6° in Subsect. 4.1.1)
that, knowing ¢ > 0 we can find a é-neighborhood U?(x) of = such that the
oscillation w(f; U&(z)) of f on the set U(x) = ENU’(z), consisting of the
points in the domain of definition E lying in U J(a:), is less than €. For each
point € E we construct a neighborhood U%(z) having this property. The
quantity § may vary from one point to another, so that it would be more
accurate, if more cumbersome, to denote the neighborhood by the symbol
Us) (z), but since the whole symbol is determined by the point z, we can
agree on the following abbreviated notation: U(z) = U%®)(z) and V(z) =
Us@)/2(g).

The open intervals V(x), = € E, taken together, cover the closed interval
[a,b], and so by the finite covering lemma one can select a finite covering
V(z1),...,V(zn). Let § = min{36(x1),...,36(zn)}. We shall show that
|f(z") — f(z")| < € for any points 2’, 2" € E such that |2’ — 2| < §. Indeed,
since the system of open intervals V(z1),...,V(z,) covers E, there exists an
interval V (z;) of this system that contains 2/, that is |2’ — z;| < 16(x;). But
in that case

8" — il < lo’ — o+ |a' — 2l <8+ 50(@:) < 36(z) + 36(z) = (z:)

Consequently z’,z" € Ug(zi)(xi) = ENU®)(z;) and so |f(z') — f(z")] <
w(f; Ug(zi)(:vi)) <e. O

The examples given above show that Cantor’s theorem makes essential
use of a certain property of the domain of definition of the function. It is
clear from the proof that, as in Theorem 3, this property is that from every
covering of E by neighborhoods of its points one can extract a finite covering.
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Now that Theorem 4 has been proved, it is useful to return once again
to the examples studied earlier of functions that are continuous but not uni-
formly continuous, in order to clarify how it happens that sin(z?), for ex-
ample, which is uniformly continuous on each closed interval of the real line
by Cantor’s theorem, is nevertheless not uniformly continuous on R. The
reason is completely analogous to the reason why a continuous function in
general fails to be uniformly continuous. This time we invite our readers to
investigate this question on their own.

We now pass to the last theorem of this section, the inverse function
theorem. We need to determine the conditions under which a real-valued
function on a closed interval has an inverse and the conditions under which
the inverse is continuous.

Proposition 1. A continuous mapping f : E — R of a closed interval E =
[a,b] into R is injective if and only if the function f is strictly monotonic on
[a,B].

Proof. If f is increasing or decreasing on any set £ C R whatsoever, the
mapping f : E — R is obviously injective: at different points of E the function
assumes different values.

Thus the more substantive part of Proposition 1 consists of the assertion
that every continuous injective mapping f : [a, b] — R is realized by a strictly
monotonic function.

Assuming that such is not the case, we find three points z; < 9 < z3
in [a, b] such that f(z2) does not lie between f(z1) and f(z3). In that case,
either f(xz3) lies between f(z1) and f(z2) or f(z1) lies between f(x2) and
f(z3). For definiteness assume that the latter is the case. By hypothesis f is
continuous on [z3,z3]. Therefore, by Theorem 2, there is a point 2} in this
interval such that f(z}) = f(z1). We then have z; < z}, but f(z1) = f(=z}),
which is inconsistent with the injectivity of the mapping. The case when
f(z3) lies between f(z1) and f(z2) is handled similarly. O

Proposition 2. Each strictly monotonic function f : X — R defined on
a numerical set X C R has an inverse f~! : Y — R defined on the set
Y = f(X) of values of f, and has the same kind of monotonicity on Y that
f has on X.

Proof. The mapping f: X — Y = f(X) is surjective, that is, it is a mapping
of X onto Y. For definiteness assume that f : X — Y is increasing on X. In
that case

Ve, € XVro e X (a:1 <z2 & f(z1) < f(xz)) . (4.1)

Thus the mapping f : X — Y assumes different values at different points,
and so is injective. Consequently f : X — Y is bijective, that is, it is a
one-to-one correspondence between X and Y. Therefore the inverse mapping
f71:Y — X is defined by the formula z = f~!(y) when y = f(z).
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Comparing the definition of the mapping f~! : Y — X with relation
(4.1), we arrive at the relation

V€YV €Y (7 (w) < 1 (we) © v < 12) (4.2)

which means that the function f~! is also increasing on its domain of defini-
tion.

The case when f : X — Y is decreasing on X is obviously handled
similarly. O

In accordance with Proposition 2 just proved, if we are interested in the
continuity of the function inverse to a real-valued function, it is useful to
investigate the continuity of monotonic functions.

Proposition 3. The discontinuities of a function f : E — R that is mono-
tonic on the set E C R can be only discontinuities of first kind.

Proof. For definiteness let f be nondecreasing. Assume that a € F is a point
of discontinuity of f. Since a cannot be an isolated point of E, a must be
a limit point of at least one of the two sets E; = {z € E|z < a} and
E} = {z € E|z > a}. Since f is nondecreasing, for any point z € E, we
have f(z) < f(a), and the restriction f ] Br of fto E] is a nondecreasmg
function that is bounded from above. It then follows that the limit

lim (f|,-)(@) = __lim f(z)=f(a—0)

Eg 3z—a @ E>z—a—0

exists.
The proof that the limit lim  f(z) = f(a+0) exists when a is a limit
E>z—a+0

point of E} is analogous.

The case when f is a nonincreasing function can be handled either by
repeating the reasoning just given or passing to the function —f, so as to
reduce the question to the case already considered. O

Corollary 1. If a is a point of discontinuity of a monotonic function f :
E — R, then at least one of the limits

gl f(@) =fla=0),  lim f(z)=f(a+0)
exists, and strict inequality holds in at least one of the inequalities f(a—0) <
f(a) < f(a+0) when f is nondecreasing and f(a —0) > f(a) > f(a+0)
when f is nonincreasing. The function assumes no values in the open interval
defined by the strict inequality. Open intervals of this kind determined by
different points of discontinuity have no points in common.

Proof. Indeed, if a is a point of discontinuity, it must be a limit point of
the set E, and by Proposition 3 is a discontinuity of first kind. Thus at
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least one of the bases E > z — a—0 and £ > z — a + 0 is defined,
and the limit of the function over that base exists. (When both bases are
defined, the limits over both bases exist.) For definiteness assume that f
is nondecreasing. Since a is a point of discontinuity, strict inequality must
actually hold in at least one of the inequalities f(a — 0) < f(a) < f(a+0).
Since f(z) < Ealigz—o f(z) = f(a—0),if z € FE and = < a, the open interval

(f(a —0), f(a)) defined by the strict inequality f(a — 0) < f(a) is indeed
devoid of values of the function. Analogously, since f(a+0) < f(z) fx € E
and a < z, the open interval (f(a), f(a + 0)) defined by the strict inequality
f(a) < f(a+ 0) contains no values of f.

Let a; and a2 be two different points of discontinuity of f, and assume
a1 < az. Then, since the function is nondecreasing,

fla1 —0) < f(a1) < f(a1 +0) < f(az = 0) < f(az2) < f(az +0) .

It follows from this that the intervals containing no values of f and corre-
sponding to different points of discontinuity are disjoint. O

Corollary 2. The set of points of discontinuity of a monotonic function is
at most countable.

Proof. With each point of discontinuity of a monotonic function we associate
the corresponding open interval in Corollary 1 containing no values of f.
These intervals are pairwise disjoint. But on the line there cannot be more
than a countable number of pairwise disjoint open intervals. In fact, one can
choose a rational number in each of these intervals, so that the collection of
intervals is equipollent with a subset of the set QQ of rational numbers. Hence
it is at most countable. Therefore, the set of points of discontinuity, which
is in one-to-one correspondence with a set of such intervals, is also at most
countable. O

Proposition 4. (A criterion for continuity of a monotonic function.) A
" monotonic function f : E — R defined on a closed interval E = [a,b] is
continuous if and only if its set of values f(E) is the closed interval with
endpoints f(a) and f(b).6

Proof. If f is a continuous monotonic function, the monotonicity implies that
all the values that f assumes on the closed interval [a, b] lie between the values
f(a) and f(b) that it assumes at the endpoints. By continuity, the function
must assume all the values intermediate between f(a) and f(b). Hence the set
of values of a function that is monotonic and continuous on a closed interval
[a, b] is indeed the closed interval with endpoints f(a) and f(b).

Let us now prove the converse. Let f be monotonic on the closed interval
[a,b]. If f has a discontinuity at some point ¢ € [a, b], by Corollary 1 one of the

5 Here f(a) < f(b) if f is nondecreasing, and f(b) < f(a) if f is nonincreasing.
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open intervals | f(c—0), f(c)[ and ] f(c), f(c+0] is defined and nonempty and
contains no values of f. But, since f is monotonic, that interval is contained in
the interval with endpoints f(a) and f(b). Hence if a monotonic function has
a point of discontinuity on the closed interval [a, ], then the closed interval
with endpoints f(a) and f(b) cannot be contained in the range of values of
the function. O

Theorem 5. (The inverse function theorem). A function f : X — R that is
strictly monotonic on a set X C R has an inverse f~! : Y — R defined on
the set Y = f(X) of values of f. The function f~! : Y — R is monotonic
and has the same type of monotonicity on 'Y that f has on X.

If in addition X is a closed interval [a,b] and f is continuous on X, then
the set Y = f(X) is the closed interval with endpoints f(a) and f(b) and the
function f~1:Y — R is continuous on it.

Proof. The assertion that the set Y = f(X) is the closed interval with end-
points f(a) and f(b) when X = [a,b] and f is continuous follows from
Proposition 4 proved above. It remains to be verified that f~ : ¥ — R
is continuous. But f~! is monotonic on Y, Y is a closed interval, and
FYY) = X = [a,}] is also a closed interval. We conclude by Proposition 4
that f~! is continuous on the interval Y with endpoints f(a) and f(b). O

Example 8. The function y = f(z) = sinz is increasing and continuous on
the closed interval [ s 2] Hence the restriction of the function to the closed
interval [ — %, %] has an inverse = f~!(y), which we denote = = arcsiny;
this function is defined on the closed interval [sin ( — %),sin ()] = [-1,1],
increases from —7 to 7, and is continuous on this closed lnterval

Example 9. Similarly, the restriction of the function y = cosx to the closed
interval [0, 7] is a decreasing continuous function, which by Theorem 5 has
an inverse denoted z = arccosy, defined on the closed interval [—1,1] and
decreasing from 7 to 0 on that interval.

Ezxample 1 0. The restriction of the function y = tanz to the open interval
X =] - %,%][ is a continuous function that increases from —oo to +oo. By
the first part of Theorem 5 it has an inverse denoted z = arctany, defined
for all y € R, and increasing within the open interval | — Z, 3| of its values.
To prove that the function z = arctany is continuous at each point yo of its
domain of definition, we take the point o = arctanyy and a closed interval
[zo — &, % + €] containing zo and contained in the open interval | — 3, Z|. If
g — € = arctan(yo — 61) and xo + € = arctan(yp + d2), then for every y € R
such that yo—d; < y < yo+0J2 we shall have 2o —e < arctany < z¢+¢. Hence
| arctany — arctan yo| < € for —§; < y — yo < d2. The former inequality holds
in particular if |y — yo| < & = min{d1,d2}, which verifies that the function
z = arctany is continuous at the point yg € R.
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Ezxample 11. By reasoning analogous to that of the preceding example, we
establish that since the restriction of the function y = cotx to the open
interval ]0, 7| is a continuous function that decreases from +o0 to —oo, it has
an inverse denoted x = arccot y, defined, continuous, and decreasing on the
entire real line R from 7 to 0 and assuming values in the range )0, 7.

Remark. In constructing the graphs of mutually inverse functions y = f(z)
and x = f~!(y) it is useful to keep in mind that in a given coordinate system
the points with coordinates (z, f(z)) = (z,y) and (y, f~(¥)) = (y, ) are
symmetric with respect to the bisector of the angle in the first quadrant.

Thus the graphs of mutually inverse functions, when drawn in the same
coordinate system, are symmetric with respect to this angle bisector.

4.2.3 Problems and Exercises

1. Show that
a) if f € C(A) and B C A, then f 5 € C(B);

b) if a function f : B3 U E2 — R is such that f
always the case that f € C(E1 U E»).

5 € C(E;), i = 1,2, it is not

c¢) the Riemann function R, and its restriction R’ to the set of rational numbers

are both discontinuous at each point of Q except 0, and all the points of discontinuity
are removable (see Example 12 of Sect. 4.1).

2. Show that for a function f € Cl[a,b] the functions
m(z) = min f(t) and M(z)= max f(t)
are also continuous on the closed interval [a, b].

3. a) Prove that the function inverse to a function that is monotonic on an open
interval is continuous on its domain of definition.

b) Construct a monotonic function with a countable set of discontinuities.

c) Show that if functions f : X = Y and f~! : Y — X are mutually inverse
(here X and Y are subsets of R), and f is continuous at a point zo € X, the
function f~! need not be continuous at yo = f(zo) in Y.

4. Show that

a) if f € Cla,b] and g € C|a,b], and, in addition, f(a) < g(a) and f(b) > g(b),
then there exists a point ¢ € [a, b] at which f(c) = g(c);

b) any continuous mapping f : [0,1] — [0, 1] of a closed interval into itself has
a fixed point, that is, a point = € [0,1] such that f(z) = z;

¢) if two continuous mappings f and g of an interval into itself commute, that
is, fog=go f, then they have a common fixed point;

d) a continuous mapping f : R — R may fail to have a fixed point;
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e) a continuous mapping f :]0,1[—]0, 1[ may fail to have a fixed point;
f) if a mapping f : [0,1] — [0,1] is continuous, f(0) = 0, f(1) = 1, and
(f o f)(z) =z on [0,1], then f(z) = =.

5. Show that the set of values of any function that is continuous on a closed interval
is a closed interval.

6. Prove the following statements.

a) If a mapping f : [0,1] — [0,1] is continuous, f(0) = 0, f(1) = 1, and
f*(z):=fo...of(x) ==z on [0,1], then f(z) = z.

S —
n factors

b) If a function f : [0,1] — [0,1] is continuous and nondecreasing, then for any
point z € [0,1] at least one of the following situations must occur: either z is a
fixed point, or f™(z) tends to a fixed point. (Here f™(z) = fo...o f(z) is the nth
iteration of f.)

7. Let f:[0,1] — R be a continuous function such that f(0) = f(1). Show that
a) for any n € N there exists a horizontal closed interval of length % with
endpoints on the graph of this function;

b) if the number ! is not of the form Z there exists a function of this form on
whose graph one cannot inscribe a horizontal chord of length I.

8. The modulus of continuity of a function f : E — R is the function w(d) defined
for 6 > 0 as follows:
w(@) = sup |f(z1) - f(=2)] -

|z1—z2|<é
z1,z2€E

Thus, the least upper bound is taken over all pairs of points z;,z2 of E whose
distance apart is less than §.
Show that

a) the modulus of continuity is a nondecreasing nonnegative function having
the limit” w(40) = lim w();
6§40
b) for every € > 0 there exists § > 0 such that for any points z1,z2 € E the
relation |z1 — z2| < § implies |f(z1) — f(z2)| < w(4+0) + &;

¢) if E is a closed interval, an open interval, or a half-open interval, the relation
w(B1 + 82) < w(81) + w(b2)

holds for the modulus of continuity of a function f : E — R;

d) the moduli of continuity of the functions z and sin(z?) on the whole real axis
are respectively w(d) = 0 and the constant w(d) = 2 in the domain § > 0;

e) a function f is uniformly continuous on E if and only if w(+0) = 0.

7 For this reason the modulus of continuity is usually considered for § > 0, setting
w(0) = w(+0).
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9. Let f and g be bounded functions defined on the same set X. The quantity
A = sup |f(z) — g(z)| is called the distance between f and g. It shows how well
zeX

one function approximates the other on the given set X. Let X be a closed interval
[a,b]. Show that if f,g € Cla,b], then Jz¢ € [a,b], where A = |f(zo) — g(z0)|, and
that such is not the case in general for arbitrary bounded functions.

10. Let P,(x) be a polynomial of degree n. We are going to approximate a bounded
function f : [a,b] — R by polynomials. Let

A(Pn) = sup |f(z) — Pa(z)| and En(f) =inf A(Fn),

z€la,b)

where the infimum is taken over all polynomials of degree n. A polynomial P, is
called a polynomial of best approzimation of f if A(P,) = E.(f).
Show that

a) there exists a polynomial Py(z) = ao of best approximation of degree zero;

b) among the polynomials @x(z) of the form AP, (z), where P, is a fixed poly-
nomial, there is a polynomial @», such that

A(Qx,) = min A(Qn) ;

c) if there exists a polynomial of best approximation of degree n, there also
exists a polynomial of best approximation of degree n + 1;

d) for any bounded function on a closed interval and any n = 0,1,2,... there
exists a polynomial of best approximation of degree n.

11. Prove the following statements.
a) A polynomial of odd degree with real coefficients has at least one real root.

b) If P, is a polynomial of degree n, the function sgn P, (z) has at most n points
of discontinuity.

c) If there are n + 2 points o < 1 < -++ < Tn41 in the closed interval [a, b]
such that the quantity

sgn [(f(z:) = Pa(w) ) (<1)']

assumes the same value for i =0,...,n+1, then E,(f) > min |f(z;)— Pn(z:)l.
0<i<n+1

(This result is known as Vallée Poussin’s theorem.® For the definition of E,(f) see
Problem 10.)

12. a) Show that for any n € N the function T, (z) = cos(n arccosz) defined on
the closed interval [—1,1] is an algebraic polynomial of degree n. (These are the
Chebyshev polynomials.)

b) Find an explicit algebraic expression for the polynomials T1, T, T3, and T4
and draw their graphs.

8 Ch.J.de la Vallée Poussin (1866-1962) — Belgian mathematician and specialist
in theoretical mechanics.
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c) Find the roots of the polynomial T}, (x) on the closed interval [—1,1] and the
points of the interval where |Th(x)| assumes its maximum value.

d) Show that among all polynomials P, (z) of degree n whose leading coefficient
is 1 the polynomial T, (x) is the unique polynomial closest to zero, that is, E,(0) =
Imlegi |T(z)|. (For the definition of E,(f) see Problem 10.)

13. Let f € Cla,b].
a) Show that if the polynomial P,(x) of degree n is such that there are n + 2

points o < --- < Tn41 (called Chebyshev alternant points) for which f(z:) —
P, (z;) = (—1)*A(Py) - o, where A(P,) = tél[a}%] |f(z) — Po(x)| and « is a constant
z€[a,

equal to 1 or —1, then P,(z) is the unique polynomial of best approximation of
degree n to f (see Problem 10).

b) Prove Chebyshev’s theorem: A polynomial P,(z) of degree n is a polynomial
of best approzimation to the function f € Cla,b] if and only if there are at least
n + 2 Chebyshev alternant points on the closed interval [a,b].

¢) Show that for discontinuous functions the preceding statement is in general
not true.

d) Find the polynomials of best approximation of degrees zero and one for the
function |z| on the interval [—1,2].

14. In Sect. 4.2 we discussed the local properties of continuous functions. The
present problem makes the concept of a local property more precise.

Two functions f and g are considered equivalent if there is a neighborhood U (a)
of a given point a € R such that f(z) = g(z) for all z € U(a). This relation between
functions is obviously reflexive, symmetric, and transitive, that is, it really is an
equivalence relation.

A class of functions that are all equivalent to one another at a point a is called
a germ of functions at a. If we consider only continuous functions, we speak of a
germ of continuous functions at a.

The local properties of functions are properties of the germs of functions.

a) Define the arithmetic operations on germs of numerical-valued functions
defined at a given point.

b) Show that the arithmetic operations on germs of continuous functions do not
lead outside this class of germs.

¢) Taking account of a) and b), show that the germs of continuous functions
form a ring — the ring of germs of continuous functions.

d) A subring I of aring K is called an ideal of K if the product of every element
of the ring K with an element of the subring I belongs to I. Find an ideal in the
ring of germs of continuous functions at a.

15. An ideal in a ring is mazimal if it is not contained in any larger ideal except
the ring itself. The set C[a, b] of functions continuous on a closed interval forms a
ring under the usual operations of addition and multiplication of numerical-valued
functions. Find the maximal ideals of this ring.



5 Differential Calculus

5.1 Differentiable Functions

5.1.1 Statement of the Problem and Introductory Considerations

Suppose, following Newton,! we wish to solve the Kepler problem? of two
bodies, that is, we wish to explain the law of motion of one celestial body m (a
planet) relative to another body M (a star). We take a Cartesian coordinate
system in the plane of motion with origin at M (Fig. 5.1). Then the position
of m at time ¢ can be characterized numerically by the coordinates ((t), y(t))
of the point in that coordinate system. We wish to find the functions z(t)
and y(t).

M

Fig. 5.1.

The motion of m relative to M is governed by Newton’s two famous laws:

the general law of motion
ma=F, (5.1)

! I. Newton (1642-1727) — British physicist, astronomer, and mathematician, an
outstanding scholar, who stated the basic laws of classical mechanics, discov-
ered the law of universal gravitation, and developed (along with Leibniz) the
foundations of differential and integral calculus. He was appreciated even by
his contemporaries, who inscribed on his tombstone: “Hic depositum est, quod
mortale fuit Isaaci Newtoni” (Here lies what was mortal of Isaac Newton).

2 J.Kepler (1571-1630) — famous German astronomer who discovered the laws of
motion of the planets (Kepler’s laws).
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connecting the force vector with the acceleration vector that it produces via
the coefficient of proportionality m — the inertial mass of the body,? and

the law of universal gravitation, which makes it possible to find the gravi-
tational action of the bodies m and M on each other according to the formula

mMr
e

F=G (5.2)

where r is a vector with its initial point in the body to which the force is
applied and its terminal point in the other body and |r| is the length of the
vector r, that is, the distance between m and M.

Knowing the masses m and M, we can easily use Eq. (5.2) to express
the right-hand side of Eq. (5.1) in terms of the coordinates z(t) and y(t) of
the body m at time ¢, and thereby take account of all the data for the given
motion.

To obtain the relations on z(t) and y(t) contained in Eq. (5.1), we must
learn how to express the left-hand side of Eq. (5.1) in terms of z(¢) and y(¢).

Acceleration is a characteristic of a change in velocity v(t). More precisely,
it is simply the rate at which the velocity changes. Therefore, to solve the
problem we must first of all learn how to compute the velocity v(t) at time
t possessed by a body whose motion is described by the radius-vector r(t) =
(z(8),y(t)).

Thus we wish to define and learn how to compute the instantaneous ve-
locity of a body that is implicit in the law of motion (5.1).

To measure a thing is to compare it to a standard. In the present case,
what can serve as a standard for determining the instantaneous velocity of
motion? ,

The simplest kind of motion is that of a free body moving under iner-
tia. This is a motion under which equal displacements of the body in space
(as vectors) occur in equal intervals of time. It is the so-called uniform (rec-
tilinear) motion. If a point is moving uniformly, and r(0) and r(1) are its
radius-vectors relative to an inertial coordinate system at times ¢ = 0 and
t = 1 respectively, then at any time ¢ we shall have

r(t)—r(0)=v-t, (5.3)

where v = r(1) — r(0). Thus the displacement r(t) — r(0) turns out to be a
linear function of time in this simplest case, where the role of the constant
of proportionality between the displacement r(t) — r(0) and the time ¢ is
played by the vector v that is the displacement in unit time. It is this vector
that we call the velocity of uniform motion. The fact that the motion is
rectilinear can be seen from the parametric representation of the trajectory:

3 We have denoted the mass by the same symbol we used for the body itself,
but this will not lead to any confusion. We remark also that if m <« M, the
coordinate system chosen can be considered inertial.
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r(t) = r(0) + v - t, which is the equation of a straight line, as you will recall
from analytic geometry.

We thus know the velocity v of uniform rectilinear motion given by Eq.
(5.3). By the law of inertia, if no external forces are acting on a body, it
moves uniformly in a straight line. Hence if the action of M on m were to
cease at time ¢, the latter would continue its motion, in a straight line at a
certain velocity from that time on. It is natural to regard that velocity as the
instantaneous velocity of the body at time t.

However, such a definition of instantaneous velocity would remain a pure
abstraction, giving us no guidance for explicit computation of the quantity, if
not for the circumstance of primary importance that we are about to discuss.

While remaining within the circle we have entered (logicians would call
it a “vicious” circle) when we wrote down the equation of motion (5.1) and
then undertook to determine what is meant by instantaneous velocity and
acceleration, we nevertheless remark that, even with the most general ideas
about these concepts, one can draw the following heuristic conclusions from
Eq. (5.1). If there is no force, that is, F = 0, then the acceleration is also
zero. But if the rate of change a(t) of the velocity v(t) is zero, then the
velocity v(t) itself must not vary over time. In that way, we arrive at the law
of inertia, according to which the body indeed moves in space with a velocity
that is constant in time.

From this same Equation (5.1) we can see that forces of bounded magni-
tude are capable of creating only accelerations of bounded magnitude. But if
the absolute magnitude of the rate of change of a quantity P(t) over a time
interval [0, t] does not exceed some constant c, then, in our picture of the sit-
uation, the change |P(t) — P(0)| in the quantity P over time ¢ cannot exceed
¢ - t, that is, in this situation, the quantity changes by very little in a small
interval of time. (In any case, the function P(t) turns out to be continuous.)
Thus, in a real mechanical system the parameters change by small amounts
over a small time interval.

In particular, at all times t close to some time to the velocity v(t) of the
. body m must be close to the value v(tp) that we wish to determine. But in
that case, in a small neighborhood of the time to the motion itself must differ
by only a small amount from uniform motion at velocity v(to), and the closer
to to, the less it differs.

If we photographed the trajectory of the body m through a telescope,
depending on the power of the telescope, we would see approximately what
is shown in Fig. 5.2.

The portion of the trajectory shown in Fig. 5.2¢ corresponds to a time
interval so small that it is difficult to distinguish the actual trajectory from
a straight line, since this portion of the trajectory really does resemble a
straight line, and the motion resembles uniform rectilinear motion. From this
observation, as it happens, we can conclude that by solving the problem of
determining the instantaneous velocity (velocity being a vector quantity) we
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Fig. 5.2.

will at the same time solve the purely geometric problem of defining and
finding the tangent to a curve (in the present case the curve is the trajectory
of motion).

Thus we have observed that in this problem we must have v(t) ~ v(to)
for t close to tg, that is, v(t) — v(to) as t — to, or, what is the same,
v(t) = v(to) + o(1) as t — to. Then we must also have

r(t) — r(to) =~ v(to) - (t — to)

for t close to to. More precisely, the value of the displacement r(t) — r(¢o) is
equivalent to v(to)(t — to) as t — to, or

r(t) — r(to) = v(to)(t — to) + o(v(to)(t — t0)) , (5.4)

where o(v(to)(t — to)) is a correction vector whose magnitude tends to zero
faster than the magnitude of the vector v(¢9)(t—to) as t — to. Here, naturally,
we must except the case when v(tp) = 0. So as not to exclude this case
from consideration in general, it is useful to observe that* |v(to)(t — to)| =
[v(to)| It — to|- Thus, if |v(to)| # 0, then the quantity |v(to)(t — to)| is of
the same order as |t — to|, and therefore o(v(to)(t — o)) = o(t — to). Hence,
instead of (5.4) we can write the relation

r(t) — r(to) = v(to)(t — to) + ot —to) , (5.5)

which does not exclude the case v(ty) = 0.

Thus, starting from the most general, and perhaps vague ideas about
velocity, we have arrived at Eq. (5.5), which the velocity must satisfy. But
the quantity v(¢p) can be found unambiguously from Eq. (5.5):

I‘(t) - I‘(to) (56)

’

vito) = tlgg) t—to

4 Here |t — to| is the absolute value of the number ¢ — to, while |v| is the absolute
value, or length of the vector v.
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Therefore both the fundamental relation (5.5) and the relation (5.6) equiv-
alent to it can now be taken as the definition of the quantity v(t¢o), the
instantaneous velocity of the body at time to.

At this point we shall not allow ourselves to be distracted into a detailed
discussion of the problem of the limit of a vector-valued function. Instead,
we shall confine ourselves to reducing it to the case of the limit of a real-
valued function, which has already been discussed in complete detail. Since
the vector r(t) — r(to) has coordinates (z(t) — z(to), y(t) — y(to)), we have
r(t)_r(t") = (z(tz_fo(“), y(t) y(t")) and hence, if we regard vectors as being
close together if their coordmates are close together, the limit in (5.6) should
be interpreted as follows:

LOELONEWECET RWTOETN

t—to T t—to t—1to

to) = lim
v( 0) tl)to t— tO
and the term o(t — to) in (5.5) should be interpreted as a vector depending
on t such that the vector % tends (coordinatewise) to zero as t — .

Finally, we remark that if v(to) # 0, then the equation

r —r(to) = v(to) - (t — to) (5.7)

defines a line, which by the circumstances indicated above should be regarded
as the tangent to the trajectory at the point (z(to), y(to))-

Thus, the standard for defining the velocity of a motion is the velocity of
uniform rectilinear motion defined by the linear relation (5.7). The standard
motion (5.7) is connected with the motion being studied as shown by relation
(5.5). The value v(to) at which (5.5) holds can be found by passing to the
limit in (5.6) and is called the velocity of motion at time to. The motions
studied in classical mechanics, which are described by the law (5.1), must
admit comparison with this standard, that is, they must admit of the linear
approximation indicated in (5.5).

If r(t) = (z(t),y(t)) is the radius-vector of a moving point m at time ¢,
then #(t) = (2(t),9(t)) = v(t) is the vector that gives the rate of change of
r(t) at time ¢, and #(t) = (2(t), §i(t)) = a(t) is the vector that gives the rate
of change of v(t) (acceleration) at time ¢, then Eq. (5.1) can be written in
the form

m-i(t) = F(t),
from which we obtain in coordinate form for motion in a gravitational field
z(t)

HE) = My ¥ 2P
y(t)
EOESROE.

This is a precise mathematical expression of our original problem. Since
we know how to find #(¢) from r(¢) and then how to find (), we are already

(5.8)
§(t) = -GM
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in a position to answer the question whether a pair of functions (x(t), y(t))
can describe the motion of the body m about the body M. To answer this
question, one must find £(¢) and §(t) and check whether Egs. (5.8) hold. The
system (5.8) is an example of a system of so-called differential equations. At
this point we can only check whether a set of functions is a solution of the
system. How to find the solution or, better expressed, how to investigate the
properties of solutions of differential equations, is studied in a special and, as
one can now appreciate, critical area of analysis — the theory of differential
equations.

The operation of finding the rate of change of a vector quantity, as has
been shown, reduces to finding the rates of change of several numerical-valued
functions — the coordinates of the vector. Thus we must first of all learn how
to carry out this operation easily in the simplest case of real-valued functions
of a real-valued argument, which we now take up.

5.1.2 Functions Differentiable at a Point

We begin with two preliminary definitions that we shall shortly make precise.

Definition 0;. A function f : E — R defined on a set E C R is differentiable
at a point ¢ € E that is a limit point of E if there exists a linear function
A - (z — a) of the increment = — a of the argument such that f(z) — f(a) can
be represented as

f(x)—fla)=A-(x—a)+o(x—a)asz —a, € FE. (5.9)

In other words, a function is differentiable at a point a if the change in its
values in a neighborhood of the point in question is linear up to a correction
that is infinitesimal compared with the magnitude of the displacement x —a
from the point a.

Remark. As a rule we have to deal with functions defined in an entire neigh-
borhood of the point in question, not merely on a subset of the neighborhood.

Definition 0. The linear function A - (x — a) in Eq. (5.9) is called the
differential of the function f at a.

The differential of a function at a point is uniquely determined; for it
follows from (5.9) that
im @@ (a+ —O(m_“)) =4,
E>z—a r—a E>z—a Tr—a
so that the number A is unambiguously determined due to the uniqueness of
the limit.
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Definition 1. The number

f'(@) = lim f@) = fla) (5.10)

E>xz—a r—a
is called the derivative of the function f at a.

Relation (5.10) can be rewritten in the equivalent form

T =10 _ p(a) 4 afa),

where a(z) — 0 as ¢ — a, € F, which in turn is equivalent to
f(z)—f(a) = f'(a)(x—a)+o(zx—a)asz —a,z € E. (5.11)

Thus, differentiability of a function at a point is equivalent to the existence
of its derivative at the same point.

If we compare these definitions with what was said in Subsect. 5.1.1, we
can conclude that the derivative characterizes the rate of change of a function
at the point under consideration, while the differential provides the best linear
approximation to the increment of the function in a neighborhood of the same
point.

If a function f : E — R is differentiable at different points of the set
E, then in passing from one point to another both the quantity A and the
function o(z — a) in Eq. (5.9) may change (a result at which we have already
arrived explicitly in (5.11)). This circumstance should be noted in the very
definition of a differentiable function, and we now write out this fundamental
definition in full.

Definition 2. A function f : E — R defined on a set E C R is differentiable
at a point € E that is a limit point of E if

| f(z+h) - f(@) = A@)h + ol h) | (5.12)

where h — A(z)h is a linear function in h and a(z;h) = o(h) as h — 0,
z+hekE.

The quantities
Az(h):=(x+h)—z=h

and
Af(z;h) == f(z+h) - f(z)

are called respectively the increment of the argument and the increment of
the function (corresponding to this increment in the argument).

They are often denoted (not quite legitimately, to be sure) by the symbols
Az and Af(z) representing functions of h.

Thus, a function is differentiable at a point if its increment at that point,
regarded as a function of the increment A in its argument, is linear up to a
correction that is infinitesimal compared to h as h — 0.
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Definition 3. The function h — A(z)h of Definition 2, which is linear in h,
is called the differential of the function f: E — R at the point z € E and is
denoted df(z) or Df(z).

Thus, df(z)(h) = A(z)h.
From Definitions 2 and 3 we have

Af(z;h) — df(z)(h) = a(z;h)

and a(z;h) = o(h) as h — 0, z + h € E; that is, the difference between
the increment of the function due to the increment h in its argument and
the value of the function df(z), which is linear in h, at the same h, is an
infinitesimal of higher order than the first in A.

For that reason, we say that the differential is the (principal) linear part
of the increment of the function.

As follows from relation (5.12) and Definition 1,

Alz) = f!(z) = }{1_% w,
z+h,x€FE

and so the differential can be written as
df(z)(h) = f'(z)h . (5.13)
In particular, if f(z) = z, we obviously have f'(z) =1 and
dz(h)=1-h=h,

so that it is sometimes said that “the differential of an independent variable
equals its increment”.
Taking this equality into account, we deduce from (5.13) that

df(z)(h) = f'(z)dz(h) , (5.14)

that is,
df(z) = f'(z)dz . (5.15)
The equality (5.15) should be understood as the equality of two functions

of h.
From (5.14) we obtain

df(@)(h) _ .
T(h) = f'(=), (5.16)

that is, the function %ﬂ—”l (the ratio of the functions d f(z) and dz) is constant
and equals f'(z). For this reason, following Leibniz, we frequently denote the
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derivative by the symbol d’;f), alongside the notation f’(x) proposed by
Lagrange.’

In mechanics, in addition to these symbols, the symbol ¢(¢) (read “phi-dot
of ¢”) is also used to denote the derivative of the function ((t) with respect
to time ¢.

5.1.3 The Tangent Line; Geometric Meaning
of the Derivative and Differential

Let f : E — R be a function defined on a set £ C R and z( a given limit
point of E. We wish to choose the constant ¢y so as to give the best possible
description of the behavior of the function in a neighborhood of the point zg
among constant functions. More precisely, we want the difference f(z) — co
to be infinitesimal compared with any nonzero constant as x — zg, z € F,
that is

fx)=co+o(l)asz = xzo, Tz € E . (5.17)

This last relation is equivalent to saying Ealim f(z) = co. If, in particu-
T—>ZTo
lar, the function is continuous at zg, then Ealim f(z) = f(zo), and naturally
T—To

co = f(=o)-

Now let us try to choose the function ¢y + ¢1(z — zo) so as to have
fl@)=co+ci(x—xzp)+0(xr —xzp) asx — 29,z € E . (5.18)

This is obviously a generalization of the preceding problem, since the formula
(5.17) can be rewritten as

f(@)=co+o((z—20)°) asz > 20,z € E.

It follows immediately from (5.18) that ¢ = lim f(z), and if the

E>xz—x0
function is continuous at this point, then ¢y = f(zo).
If ¢o has been found, it then follows from (5.18) that

. r)—cC
Cl = hm L()—O .
Esz—z0 T — X9

And, in general, if we were seeking a polynomial P, (zo; ) = co+c1(z—z0) +
-+« + ¢p(z — o)™ such that

f(@)=cotci(z—x0)+ - +cn(z—0)" + o(z —z0)")
as T — zo, ¢ € F (5.19)
we would find successively, with no ambiguity, that

® J.L. Lagrange (1736-1831) — famous French mathematician and specialist in the-
oretical mechanics.
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© = gt SO
a = _lim {&=c

— )
Es>z—zo T%0

f(=)- [00+m+cn_1(m—xo)"“1]
(z—z0)™ ’

= li
‘n Bz 530
assuming that all these limits exist. Otherwise condition (5.19) cannot be
fulfilled, and the problem has no solution.
If the function f is continuous at zg, it follows from (5.18), as already
pointed out, that co = f(x¢); and we then arrive at the relation

f(@) = f(zo) = c1(z —x0) + o(x —x0) a8 T > 20, T € F,

which is equivalent to the condition that f(z) be differentiable at zo.
From this we find

N

= f'(zo) -
We have thus proved the following proposition.

Proposition 1. A function f : E — R that is continuous at a point xo € E
that is a limit point of E C R admits a linear approzimation (5.18) if and
only if it is differentiable at the point.

The function
p(z) = co + c1(z — ) (5.20)

with cg = f(zo) and ¢; = f'(z0) is the only function of the form (5.20) that
satisfies (5.18).
Thus the function

o(z) = f(zo) + f'(o)(z — o) (5.21)

provides the best linear approximation to the function f in a neighborhood
of o in the sense that for any other function ¢(z) of the form (5.20) we have
f(z) — p(z) # o(x — xo) as ¢ — zg, z € E.

The graph of the function (5.21) is the straight line

y — f(zo) = f'(z0)(z — o) , (5.22)

passing through the point (zo, f(zo)) and having slope f'(zo).

Since the line (5.22) provides the optimal linear approximation of the
graph of the function y = f(z) in a neighborhood of the point (zo, f(zo)), it
is natural to make the following definition.
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Definition 4. If a function f : F — R is defined on a set ¥ C R and
differentiable at a point zo € F, the line defined by Eq. (5.22) is called the
tangent to the graph of this function at the point (o, f(z0)).

Figure 5.3 illustrates all the basic concepts we have so far introduced in
connection with differentiability of a function at a point: the increment of the
argument, the increment of the function corresponding to it, and the value
of the differential. The figure shows the graph of the function, the tangent
to the graph at the point Py = (o, f(z0)), and for comparison, an arbitrary
line (usually called a secant) passing through Py and some point P # Py of
the graph of the function.

! y=f(z)
oy = L M=)
y — f(zo0) = f'(zo)(z — 20)
f@o+h)p-------—--——m- -
/P Af(zo; h)
&f(@o) (k) & (o) (h)
f(zo)$- ‘7 Az(h)
0 Zo+h z

The following definition extends Definition 4.

Definition 5. If the mappings f : E — R and g : E — R are continuous at
a point zo € E that is a limit point of E and f(z) — g(z) = o((z — zo)™)
as £ — xo, ¢ € E, we say that f and g have nth order contact at zo (more
precisely, contact of order at least n).

For n = 1 we say that the mappings f and g are tangent to each other at
Zo.

According to Definition 5 the mapping (5.21) is tangent at zg to a map-
ping f : E — R that is differentiable at that point.

We can now also say that the polynomial P,(zo;x) = co + ¢1(x — zo) +
-+« 4 cp(x — x0)™ of relation (5.19) has contact of order at least n with the
function f.

The number h = x — xg, that is, the increment of the argument, can be
regarded as a vector attached to the point xy and defining the transition from
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To to = xo + h. We denote the set of all such vectors by TR(zo) or TRy, .5
Similarly, we denote by TR(yo) or TRy, the set of all displacement vectors
from the point yo along the y-axis (see Fig. 5.3). It can then be seen from
the definition of the differential that the mapping

df(zo) : TR(zo) — TR(f(z0)) » (5.23)
defined by the differential h — f'(zo)h = df(zo)(h) is tangent to the mapping
h = f(zo + h) — f(zo) = Af(zo; h) , (5.24)

defined by the increment of a differentiable function.

We remark (see Fig. 5.3) that if the mapping (5.24) is the increment of the
ordinate of the graph of the function y = f(x) as the argument passes from
Zo to xo + h, then the differential (5.23) gives the increment in the ordinate
of the tangent to the graph of the function for the same increment h in the
argument.

5.1.4 The Role of the Coordinate System

The analytic definition of a tangent (Definition 4) may be the cause of some
vague uneasiness. We shall try to state what it is exactly that makes one
uneasy. However, we shall first point out a more geometric construction of
the tangent to a curve at one of its points Py (see Fig. 5.3).

Take an arbitrary point P of the curve different from Py. The line deter-
mined by the pair of points Py and P, as already noted, is called a secant
in relation to the curve. We now force the point P to approach P, along the
curve. If the secant tends to some limiting position as we do so, that limiting
position of the secant is the tangent to the curve at Fp.

Despite its intuitive nature, such a definition of the tangent is not available
to us at the moment, since we do not know what a curve is, what it means to
say that “a point tends to another point along a curve”, and finally, in what
sense we are to interpret the phrase “limiting position of the secant”.

Rather than make all these concepts precise, we point out a fundamental
difference between the two definitions of tangent that we have introduced.
The second was purely geometric, unconnected (at least until it is made
more precise) with any coordinate system. In the first case, however, we have
defined the tangent to a curve that is the graph of a differentiable function
in some coordinate system. The question naturally arises whether, if the
curve is written in a different coordinate system, it might not cease to be
differentiable, or might be differentiable but yield a different line as tangent
when the computations are carried out in the new coordinates.

This question of invariance, that is, independence of the coordinate sys-
tem, always arises when a concept is introduced using a coordinate system.

5 This is a slight deviation from the more common notation Ty,R or Ty, (R).
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The question applies in equal measure to the concept of velocity, which we
discussed in Subsect. 5.1.1 and which, as we have mentioned already, includes
the concept of a tangent.

Points, vectors, lines, and so forth have different numerical characteris-
tics in different coordinate systems (coordinates of a point, coordinates of a
vector, equation of a line). However, knowing the formulas that connect two
coordinate systems, one can always determine from two numerical represen-
tations of the same type whether or not they are expressions for the same
geometric object in different coordinate systems. Intuition suggests that the
procedure for defining velocity described in Subsect. 5.1.1 leads to the same
vector independently of the coordinate system in which the computations
are carried out. At the appropriate time in the study of functions of several
variables we shall give a detailed discussion of questions of this sort. The
invariance of the definition of velocity with respect to different coordinate
systems will be verified in the next section.

Before passing to the study of specific examples, we now summarize some
of the results.

We have encountered the problem of the describing mathematically the
instantaneous velocity of a moving body.

This problem led us to the problem of approximating a given function in
the neighborhood of a given point by a linear function, which on the geometric
level led to the concept of the tangent. Functions describing the motion of a
real mechanical system are assumed to admit such a linear approximation.

In this way we have distinguished the class of differentiable functions in
the class of all functions.

The concept of the differential of a function at a point has been intro-
duced. The differential is a linear mapping defined on displacements from the
point under consideration that describes the behavior of the increment of a
differentiable function in a neighborhood of the point, up to a quantity that
is infinitesimal in comparison with the displacement.

The differential df (zo)h = f’(xo)h is completely determined by the num-
ber f'(zo), the derivative of the function f at zo, which can be found by

taking the limit
/ s f (112) —f (xO)
f (:l)o) - Eali:gzo r — X9 )

The physical meaning of the derivative is the rate of change of the quantity
f(z) at time xzo; its geometrical meaning is the slope of the tangent to the
graph of the function y = f(x) at the point (zo, f(xo)).

5.1.5 Some Examples

Ezample 1. Let f(x) = sinz. We shall show that f'(z) = cosz.
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Proof.
im sin(z + h) —sinz _ i 2sin (&) cos (z+ %)
h—0 h h—0 h
sin (%)

h
= limcos(x+—)olim - =cosz . O
h—0 2/ h—0 (5)
Here we have used the theorem on the limit of a product, the continuity
of the function cos z, the equivalence sint ~ t as t — 0, and the theorem on

the limit of a composite function.

Ezample 2. We shall show that cos’ z = —sinz.

Proof.
lim cos(z + h) —cosz _ lim —2sin (£) sin (z + 2) _
h—0 h h—0 h

= —sinz . O

L. h . sin (%)
~ jim sin (‘”5)'%‘3}) &)

Ezample 3. We shall show that if f(t) = r coswt, then f'(t) = —rwsinwt.
Proof.

rcosw(t + h) — rcoswt _ —2sin (&) sinw(t + &) B

li li
hl—% h " hlg}) h
h sin (¥
= —rw lim sinw(t + —) - lim # = —rwsinwt . O
h—0 2/ h—0 (“’7)

Ezample 4. If f(t) = rsinwt, then f'(t) = rw coswt.
Proof. The proof is analogous to that of Examples 1 and 3. O

Example 5. The instantaneous velocity and instantaneous acceleration of a
point mass. Suppose a point mass is moving in a plane and that in some
given coordinate system its motion is described by differentiable functions of
time

c=z(), y=y()

or, what is the same, by a vector
r(t) = (z(t), y(t)) -
As we have explained in Subsect. 5.1.1, the velocity of the point at time ¢ is

the vector
v(t) = i(t) = (2(t),9(2)) ,
where #(t) and y(¢) are the derivatives of z(¢) and y(¢) with respect to time ¢.
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The acceleration a(t) is the rate of change of the vector v(t), so that

a(t) = v(t) = i(t) = (£(t),§(1)) ,

where Z(t) and §(t) are the derivatives of the functions z(t) and y(¢) with
respect to time, the so-called second derivatives of z(t) and y(¢).

Thus, in the sense of the physical problem, functions z(t) and y(t) that
describe the motion of a point mass must have both first and second deriva-
tives.

In particular, let us consider the uniform motion of a point along a circle
of radius 7. Let w be the angular velocity of the point, that is, the magnitude
of the central angle over which the point moves in unit time.

In Cartesian coordinates (by the definitions of the functions cosz and
sinz) this motion is written in the form

r(t) = (rcos(wt + @), rsin(wt + @)) ,
and if r(0) = (r,0), it assumes the form
r(t) = (rcoswt,rsinwt) .

Without loss of generality in our subsequent deductions, for the sake of
brevity, we shall assume that r(0) = (r,0).
Then by the results of Examples 3 and 4 we have

v(t) = #(t) = (—rwsinwt, rw cos wt) .
From the computation of the inner product
(v(t),r(t)) = —r?wsinwt coswt + r2wcoswtsinwt =0,

as one should expect in this case, we find that the velocity vector v(t) is or-
thogonal to the radius-vector r(¢) and is therefore directed along the tangent
to the circle.

Next, for the acceleration, we have

2

a(t) = v(t) = #(t) = (—rw? coswt, —rw? sinwt) ,

that is, a(t) = —w?r(t), and the accleration is thus indeed centripetal, since
it has the direction opposite to that of the radius-vector r(t).

Moreover, ) )
2 2 [v(®)] v
ja(e)] = Pr(e)] = w?r = L =
where v = |v(¢)|.

Starting from these formulas, let us compute, for example, the speed of a
low-altitude satellite of the Earth. In this case r equals the radius of the earth,
that is, r = 6400 km, while |a(t)| = g, where g ~ 10m/s? is the acceleration
of free fall at the surface of the earth.

Thus, v2 = |a(t)[r ~ 10m/s®> x 64 -10°m = 64 - 10° (mn/s)?, and so
v~8-103m/s.
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Ezxample 6. The optic property of a parabolic mirror. Let us consider the
parabola y = %xz (p > 0, see Fig. 5.4), and construct the tangent to it at

the point (2o, y0) = (o, 2—173113(2)).

Since f(z) = 5;2?, we have
1,2 1.2
=z? - Lo 1
Fl(zo) = lim 2=— 220 — — lim (¢4 @) = —a0 .
z—x0 T — o 2p z—zo P

Hence the required tangent has the equation

23 = Sao(z - 20)
Y— = —Zo\x — o
2% p

or
1
ExO(x —20) = (y— %) =0, (5.25)
where yo = g-z3.
Yy
n
(20, y0)
p
2
0 T
Fig. 5.4.

The vector n = ( — %xo, 1), as can be seen from this last equation, is
orthogonal to the line whose equation is (5.25). We shall show that the vectors
e, =(0,1) and ey = ( — o, § — yo) form equal angles with n. The vector e,
is a unit vector directed along the y-axis, while ey is directed from the point
of tangency (zo,¥0) = (o, 2—1px(2)) to the point (0, 2), which is the focus of
the parabola. Thus

COS(?yTl=<ey’n>=i,

estal = o
Coséﬁzl(eefl,lr:l z§ + 8 — 5} _ £+ 2525 2:i.
v w¢x+ (B—2a3)’ /(& +2a3)° I

Thus we have shown that a wave source located at the point (0,2), the
focus of the parabola, will emit a ray parallel to the axis of the mirror (the
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y-axis), and that a wave arriving parallel to the axis of the mirror will pass
through the focus (see Fig. 5.4).

Ezample 7. With this example we shall show that the tangent is merely the
best linear approximation to the graph of a function in a neighborhood of the
point of tangency and does not necessarily have only one point in common
with the curve, as was the case with a circle, or in general, with convex curves.
(For convex curves we shall give a separate discussion.)

Let the function be given by

2. 1 .
z?sing ,ifz#0,

fz) =
0, ifx=0.

The graph of this function is shown by the thick line in Fig. 5.5.

Fig. 5.5.

Let us find the tangent to the graph at the point (0,0). Since

248in 1 _
z“siny —0

1
/ T T in = o—
f(O)—il_% =0 —ilg%)xsmx 0,
the tangent has the equation y — 0 =0- (z — 0), or simply y = 0.
Thus, in this example the tangent is the z-axis, which the graph intersects
infinitely many times in any neighborhood of the point of tangency.

By the definition of differentiability of a function f : E — R at a point
o € F, we have

f(z) — f(zo) = A(zo)(x — xo) + o(x — z0) as T = 20, 2 € E .
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Since the right-hand side of this equality tends to zero as ¢ — zg, = € E,
it follows that Ealim f(x) = f(=zo), so that a function that is differentiable
T—>xT9

at a point is necessarily continuous at that point.
We shall show that the converse, of course, is not always true.

Ezxample 8. Let f(z) = |z|, (Fig. 5.6). Then at the point o = 0 we have

lim M= lim |a:|—0= lim __xz_l,
z—x9—0 T — X z——-0 £ —0 z——-0 I

fim @ =@ o =0 g
T—x0+0 T — X z—=+0 £ —0 =40 I

Consequently, at this point the function has no derivative and hence is
not differentiable at the point.

0 x
Fig. 5.6.

Ezample 9. We shall show that e**" — e® = e®h + o(h) as h — 0.
Thus, the function exp(x) = e” is differentiable and d exp(z)h = exp(x)h,

x
or de® = e®dz, and therefore exp’ = exp z, or 9& = e®.
dz

Proof.
e*th —e” =e%(e" — 1) = e (h + o(h)) = eh +o(h) .

Here we have used the formula e* — 1 = h + o(h) obtained in Example 39 of
Subsect. 3.2.4. O

Ezample 10. If a > 0, then a®*** — a® = a(Ina)h + o(h) as h — 0. Thus
da® = a®(Ina)dz and %“Z—z =a%lna.

Proof.

a:t+h —a% = az(ah _ 1) — az(ehlna _ 1) —

=a*(hlna+o(hlna)) = a*(Ina)h +o(h) ash— 0. O

Ezample 11. If z # 0, then In|z + h| — In|z| = 1h + o(h) as h — 0. Thus

dl1
dln|z| = ldz and 422l = 1
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Proof.
h
In|z+h| —Injz| =In|1+ ;I .

For |h| < |z| we have |1+ 2| =1+ 2, and so for sufficiently small values of
h we can write

ln|x+h|—ln|x|=ln(1+g) =g+o(g) = %h%—o(h)

as h — 0. Here we have used the relation In(1+t) = t + o(t) as t — 0, shown
in Example 38 of Subsect. 3.2.4. O

Ezample 12. If x # 0and 0 < a # 1, then log, |z+h|-log, |z| = mlnah+o(h)
as h — 0. Thus, dlog, |z| = —--dz and 5%l dlog lz| _ L

Proof.
h h
log, |z + h| — log, |z| = log, |1 + ;l = log, (1 - —) =

1 h 1 /h h
=—1In <1+ ) <—+o(—)) h+o(h) .
Ina Ina\z T T ln a
Here we have used the formula for transition from one base of logarithms
to another and the considerations explained in Example 11. O

5.1.6 Problems and Exercises

1. Show that
a) the tangent to the ellipse

1(32 y2

5+ i 1
at the point (zo, yo) has the equation
azo | ywo _ .
a? b2~

b) light rays from a source located at a focus F1 = (— Va? —b"’,O) or

= (x/a"’ — b"’,O) of an ellipse with semiaxes a > b > 0 are gathered at the
other focus by an elliptical mirror.

2. Write the formulas for approximate computation of the following values:
a) sin (% + a) for values of a near 0;
b) sin(30° + a°) for values of a° near 0;
c) cos (% -+ a) for values of o near 0;

d) cos(45° + a°) for values of a° near 0.
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3. A glass of water is rotating about its axis at constant angular velocity w. Let
y = f(z) denote the equation of the curve obtained by cutting the surface of the
liquid with a plane passing through its axis of rotation.

a) Show that f'(x) = ‘i’;-x, where g is the acceleration of free fall. (See Exam-
ple 5.)

b) Choose a function f(z) that satisfies the condition given in part a). (See
Example 6.)

¢) Does the condition on the function f(z) given in part a) change if its axis of
rotation does not coincide with the axis of the glass?

4. A body that can be regarded as a point mass is sliding down a smooth hill under
the influence of gravity. The hill is the graph of a differentiable function y = f(z).

a) Find the horizontal and vertical components of the accleration vector that
the body has at the point (zo, o).

b) For the case f(z) = 22 when the body slides from a great height, find the
point of the parabola y = 2? at which the horizontal component of the acceleration
is maximal.

5. Set
T, ifOSxS%,

Wo(z) =
l-z,if3<z<1,
and extend this function to the entire real line so as to have period 1. We denote
the extended function by o. Further, let
1 n
on(z) = 47900(4 z) .

The function ¢, has period 4~" and a derivative equal to +1 or —1 everywhere
except at the points z = ,_mLH, n € Z. Let

f@) =Y n(a).

n=1

Show that the function f is defined and continuous on R, but does not have a
derivative at any point. (This example is due to the well-known Dutch mathemati-
cian B. L. van der Waerden (1903-1996). The first examples of continuous functions
having no derivatives were constructed by Bolzano (1830) and Weierstrass (1860).)
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5.2 The Basic Rules of Differentiation

Constructing the differential of a given function or, equivalently, the process
of finding its derivative, is called differentiation.”

5.2.1 Differentiation and the Arithmetic Operations

Theorem 1. If functions f : X — R and g : X — R are differentiable at a
point x € X, then
a) their sum is differentiable ot x, and

(f+9) (@) =(f +¢')();
b) their product is differentiable at z, and
(f-9) (@) = f'(z) - g(z) + f(z) - g'(2) ;

c) their quotient is differentiable at x if g(x) # 0, and

fy f'(z)g(z) — f(z)g' (=
(—)(w)= ()()2 (z)g'(z)
g 9%(z)

Proof. In the proof we shall rely on the definition of a differentiable function
and the properties of the symbol o(-) proved in Subsect. 3.2.4.

a) (f+9)(x+h)—(f+9)(@) = (fz+h)+g(x+h)) -
— (f(@) +9()) = (f(z+h) - f()) + (9(z + h) — g(z)) =
= (f'(z)h+ o(h)) + (¢'(@)h + o(h)) = (f'(z) + g'(z))h + o(h) =
= (f' +¢)(@)h + olh) .

b) (f-g)(+h)—(f-9)(z)=f(z+h)g(x+h)— f(z)g(z) =
= (f() + f'(@)h + o(h)) (9(x) + ¢'(@)h + o(h)) — f(z)g(x) =
= (f'(z)g(z) + f(z)g' (x))h + o(h) .

¢) Since a function that is differentiable at a point € X is continuous at
that point, taking account of the relation g(z) # 0 and the properties of
continuous functions, we can guarantee that g(z + h) # 0 for sufficiently
small values of h. In the following computations it is assumed that h is small:

7 Although the problems of finding the differential and finding the derivative are
mathematically equivalent, the derivative and the differential are nevertheless
not the same thing. For that reason, for example, there are two terms in French
— dérivation, for finding the derivative, and différentiation, for finding the differ-
ential.
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(5)(m+h)— (g)(x)= %—% =

L (@ +he@) - f@g(x+h) =

~ g@)g(z+h)
= (ﬁ +0(1)) ((f(2) + ' (@)h+0(R)g(z) — f () (9(2) +'(x)h+0(h))) =
= (s37 o) (F@(@) = F(&)g (@)h + (b)) =
_ f'(””)g(””g)gx{(””)g'(‘”’ B olh).
g(xflir% :fdiz\fc ;liiitthe continuity of g at the point z and the relation

. 1
ilzlg}) g(z)g(z + h) - 9% (z)’

that is,
1 1 )
i@tk - 2@ W

where o(1) is infinitesimal as h -0,z +h € X. O

Corollary 1. The derivative of a linear combination of differentiable func-
tions equals the same linear combination of the derivatives of these functions.

Proof. Since a constant function is obviously differentiable and has a deriva-
tive equal to 0 at every point, taking f = const = c in statement b) of
Theorem 1, we find (cg)'(z) = cg'(x).

Now, using statement a) of Theorem 1, we can write

(c1f +c29)'(x) = (e1f) (=) + (c29)(z) = e1f'(z) + c29'(2) -
Taking account of what has just been proved, we verify by induction that
(cifi+- - +enfa)(z) =1 fi(@) + - +enfp(z) . O
Corollary 2. If the functions fi,..., f. are differentiable at z, then
(fi--- fn)' () = fi(@) fo(z) - fn(z) +
+ (@) f3(2) f3(@) - fa() + - + f1(@) - famr(2) fr(2) -

Proof. For n =1 the statement is obvious.

If it holds for some n € N, then by statement b) of Theorem 1 it also
holds for (n + 1) € N. By the principle of induction, we conclude that the
formula is valid for any n € N. 0O



5.2 The Basic Rules of Differentiation 195

Corollary 3. It follows from the relation between the derivative and the dif-
ferential that Theorem 1 can also be written in terms of differentials. To be
specific:

a) d(f + g)(z) = df(z) +dg(z) ;

b) d(f - g)(z) = g(x)df(z) + f(z)dg(z) ;

c) d(ﬁ)(x) y(ﬂ?)df(fv) f(I)dg(fv) if g(z) #0.

Proof. Let us verify, for example, statement a).

d(f + 9)(@)h = (f +9)(@h = (f + ¢ )(@)h =
=(f'(@)+d@)h=f(x)h+d(@)h=
= df(z)h +dg(z)h = (df (z) + dg(z))h

and we have verified that d(f + g)(z) and df(z) + dg(z) are the same func-
tion. O

Example 1. Invariance of the definition of velocity. We are now in a position
to verify that the instantaneous velocity vector of a point mass defined in
Subsect. 5.1.1 is independent of the Cartesian coordinate system used to
define it. In fact we shall verify this for all affine coordinate systems.

Let (z',22) and (&', %) be the coordinates of the same point of the plane
in two different coordinate systems connected by the relations

=1 122 4 b1 |
T = x + a x +b
7?2 = a?z! + a22? + b . (5.26)

Since any vector (in affine space) is determined by a pair of points and its
coordinates are the differences of the coordinates of the terminal and initial
points of the vector, it follows that the coordinates of a given vector in these
two coordinate systems must be connected by the relations

1 R S | 1,2
g = a1y +azv’, (5.27)

2 = a2l + a2 .

If the law of motion of the point is given by functions z!(¢) and z2(t) in
one system of coordinates, it is given in the other system by functions Z(t)
and 72(t) connected with the first set by relations (5.26).

Differentiating relations (5.26) with respect to ¢, we find by the rules for
differentiation )

121 4 o142
= a1z + a3
2 s o (5.28)
= a2 +a53z” .

518
|

S0

Thus the coordinates (v!,v?) = (2!, 4?) of the velocity vector in the first

1 ~ 21 :2 . .
system and the coordinates (#',7%) = (Z ,Z ) of the velocity vector in the
second system are connected by relations (5.27), telling us that we are dealing
with two different expressions for the same vector.
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Ezample 2. Let f(z) = tanz. We shall show that f/(z) = —%— at every
point where cosz # 0, that is, in the domain of definition of the function
tang = Sinz,

cos T . .

It was shown in Examples 1 and 2 of Sect. 5.1 that sin’(z) = cosz and

cos’ z = —sin z, so that by statement c) of Theorem 1 we find, when cos z # 0,

, sin\’ sin’ z cosz — sinz cos’ T
tan'z = [ — ) (z) = =
cos

cos?z
cosxcosx + sinxsinx 1
cos? z cos?2z
Ezample 3. cot' z = —?nl)—z wherever sinz # 0, that is, in the domain of
definition of cotz = F37.
Indeed,
, cos\’ cos’ zsinz — coszsin’ z
cot'z={(—) (z) = — =
sin sin“ x
—sinzsinz — cosz cosx 1
sin? z sin? z

Ezample 4. If P(z) = co + 12 + - - + cpz™ is a polynomial, then P'(z) =
c1 +2cox + - + nepz Ll
dz dz"

Indeed, since g7 = 1, by Corollary 2 we have <T- = nz™ 1, and the

statement now follows from Corollary 1.

5.2.2 Differentiation of a Composite Function (chain rule)

Theorem 2. (Differentiation of a composite function). If the function f :
X — Y C R is differentiable at a point x € X and the function g: Y — R
is differentiable at the point y = f(x) € Y, then the composite function
gof: X — R is differentiable at z, and the differential d(go f)(z) : TR(z) —
T]R(g( f(z))) of their composition equals the composition df(y) o df(z) of
their differentials

df(z) : TR(z) = TR(y = f(z)) and dg(y = f(z)) : TR(y) = TR(g(y)) -

Proof. The conditions for differentiability of the functions f and g have the
form

flz+h)— f(z)=f'(x)h+o(h) ash—0,z+he X,
gy+t)—gw) =g (t+o(t) ast—0,y+teY.
We remark that in the second equality here the function o(t) can be

considered to be defined for ¢ = 0, and in the representation o(t) = y(¢)t,
where ¥(t) > 0ast — 0, y+t € Y, we may assume v(0) = 0. Setting
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f(z) =y and f(z+h) = y+t, by the differentiability (and hence continuity)
of f at the point x we conclude that ¢t - 0 as h — 0, and if x + h € X, then
y+t € Y. By the theorem on the limit of a composite function, we now have

Y(f(x+h)— f(z)) =a(h) >0 ash—0,z+he X,
and thus if ¢t = f(z + h) — f(z), then

o(t) = v(f(z +h) = f(2)) (f(z + h) - f(z)) =
= a(h)(f'(z)h + o(h)) = a(h) f'(z)h + a(h)o(h) =
=o(h)+o(h)=o(h)ash—0,z+he X .

(go f)@+h) = (g0 f)(z) =g(f(z+h) —g(f(z)) =
=g(y+1t) —g(y) =g (W)t +o(t) =
=g (f(@)(f(x+h) - f(x)) +o(f(z+h) — f(z)) =
=g (f(@) (f'(@)h + o(h)) + o(f(x + h) — f(x)) =
= ¢'(f(@)) (f'(@)h) + ¢'(f(2)) (o(h)) + o(f(z + h) - f(z)) -

Since we can interpret the quantity g¢'(f(z))(f'(z)h) as the value

dg(f(z)) o df (z)h of the composition h da(y)odf (@) g (f(z)) - f'(x)h of the

mappings h EACY f'(x)h, T o) g'(y)7 at the displacement h, to complete

the proof it remains only for us to remark that the sum

g (f@))(o(h) +o(f(z+h) — f(2))

is infinitesimal compared with h as h — 0, x + h € X, or, as we have already
established,

o(f(x+h)— f(z)) =o(h)ash—0,z+h € X .
Thus we have proved that

(go )l +h)—(go f)(z)=
=3¢ (f(@) f'(@h+oh)ash—>0,z+heX .0

Corollary 4. The derivative (g o f) (x) of the composition of differentiable
real-valued functions equals the product ¢'(f(z)) - f'(z) of the derivatives of
these functions computed at the corresponding points.

There is a strong temptation to give a short proof of this last statement
in Leibniz’ notation for the derivative, in which if z = 2(y) and y = y(z), we

have
dz dz dy

dz ~ dy dz’
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which appears to be completely natural, if one regards the symbol § dz or EZ
not as a unit, but as the ratio of dz to dy or dy to dx.
The idea for a proof that thereby arises is to consider the difference quo-

tient

Az Az Ay

Az Ay Az
and then pass to the limit as Az — 0. The difficulty that arises here (which
we also have had to deal with in part!) is that Ay may be 0 even if Az # 0.

Corollary 5. If the composition (fno---o f1)(x) of differentiable functions
1= f1(2), .- Yn = fo(yYn—1) exists, then

(fno---o f1)(x) = frn(n-1)fr-1(¥Un-2) - fi(z) .

Proof. The statement is obvious if n = 1.
If it holds for some n € N, then by Theorem 2 it also holds for n + 1, so
that by the principle of induction, it holds for any n € N. O

Ezample 5. Let us show that for o € R we have & &= = az®~! in the domain
x > 0, that is, dz® = az®~1dz and

(x+h)*—2*=0az*'h+o(h)ash—0.

Proof. We write 2 = e*'% and apply the theorem, taking account of the

results of Examples 9 and 11 from Sect. 5.1 and statement b) of Theorem 1.
Let g(y) =¥ and y = f(z) = aln(m). Then z* = (g o f)(z) and
(gof)(x) =4g'(y)- f'(x) =e"- p eal’”-%:am‘a"l . O

Ezxample 6. The derivative of the logarithm of the absolute value of a differ-

entiable function is often called its logarithmic derivative.
Since F(z) = In|f(z)| = (lno| | o f)(z), by Example 11 of Sect. 5.1, we

have F'(z) = (In|f|)'(z) = (x)
Thus

(@) . _ 4@
i@ T @

Example 7. The absolute and relative errors in the value of a differentiable
function caused by errors in the data for the argument.
If the function f is differentiable at x, then

f(@+h) = f(z) = f'(x)h + a(z; h)

where a(z; h) = o(h) as h — 0.

Thus, if in computing the value f(z) of a function, the argument z is
determined with absolute error h, the absolute error |f(z + h) — f(z)| in the
value of the function due to this error in the argument can be replaced for

d(In|f)(z) =
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small values of h by the absolute value of the differential |df (z)h| = |f'(z)h|
at displacement h.
The relative error can then be computed as the ratio £ fgzglh' = |d'§g;fz| or

as the absolute value of the product |’}I((;))| || of the logarithmic derivative

of the function and the magnitude of the absolute error in the argument.
We remark by the way that if f(z) = Inz, then dlnz = df, and the
absolute error in determining the value of a logarithm equals the relative
error in the argument. This circumstance can be beautifully exploited for
example, in the slide rule (and many other devices with nonuniform scales).
To be specific, let us imagine that with each point of the real line lying right
of zero we connect its coordinate y and write it down above the point, while
below the point we write the number z = e¥. Then y = Inz. The same real
half-line has now been endowed with a uniform scale y and a nonuniform
scale z (called logarithmic). To find Inz, one need only set the cursor on the
number x and read the corresponding number y written above it. Since the
precision in setting the cursor on a particular point is independent of the
number z or y corresponding to it and is measured by some quantity Ay (the
length of the interval of possible deviation) on the uniform scale, we shall
have approximately the same absolute error in determining both a number
z and its logarithm y; and in determining a number from its logarithm we
shall have approximately the same relative error in all parts of the scale.

Ezample 8. Let us differentiate a function u(x)*®), where u(z) and v(z) are
differentiable functions and u(z) > 0. We write u(x)*(®) = ev(®)nu(2) and
use Corollary 5. Then

dev(z) Inu(zx)

) _ o) (o a) Inae) + o) D) =

= u(z)*@ ' (z) Inu(z) + v(z)u(z)* @t o (z) .

5.2.3 Differentiation of an Inverse Function

Theorem 3. (The derivative of an inverse function). Let the functions f :
X =Y and f71 :' Y — X be mutually inverse and continuous at points
2o € X and f(zo) = yo € Y respectively. If f is differentiable at xo and
f'(zo) # 0, then f~! is also differentiable at the point yo, and

(f71) (%0) = (f'(-’lfo))_l .

Proof. Since the functions f : X — Y and f~! : Y — X are mutually inverse,
the quantities f(z) — f(zo) and f~1(y) — f~'(v0), where y = f(x), are both
nonzero if x # xg. In addition, we conclude from the continuity of f at x¢ and
f~1 at yo that (X >z — z9) & (Y > y — yo). Now using the theorem on
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the limit of a composite function and the arithmetic properties of the limit,
we find

D )l e ) R T — o

li — _ZT—%
YB:}Jrgyo Y—% X3z—20 f(:z;) — f(fl«‘o)
= lim 1 _ 1
T X3z-o (f(za)::i((,m)) - f'(zo) .

Thus we have shown that the function f~! : Y — X has a derivative at
yo and that

_ -1

(F71) (wo) = (f'(xo))™ - O
Remark 1. If we knew in advance that the function f~! was differentiable
at yo, we would find immediately by the identity (f~! o f)(z) = « and the
theorem on differentiation of a composite function that (f ‘1)/(y0)~ f(zo) = 1.
Remark 2. The condition f’(x¢) # 0 is obviously equivalent to the statement

that the mapping h — f’(x¢)h realized by the differential df(zo) : TR(zo) —
TR(yo) has the inverse mapping [df(zo)]~! : TR(yo) — TR(zo) given by the

formula 7 (f’(xo))_l'r.
Hence, in terms of differentials we can write the second statement in
Theorem 3 as follows:

If a function f is differentiable at a point xo and its differential df(zo) :
TR(z9) — TR(yo) is invertible at that point, then the differential of the
function f~1 inverse to f exists at the point yo = f(xo) and is the mapping

df ™ (yo) = [df (z0)] ™! : TR(y0) = TR(o) ,
inverse to df(zo) : TR(zo) — TR(yo)-

Ezample 9. We shall show that arcsin’y = —=

1-y?

for |y| < 1. The functions
sin : [-7/2,7/2] — [-1,1] and arcsin : [-1,1] — [-7/2,7/2] are mutually
inverse and continuous (see Example 8 of Sect. 4.2) and sin’(z) = cosz # 0 if
|z| < 7/2. For |z| < 7/2 we have |y| < 1 for the values y = sin . Therefore,
by Theorem 3

11 11
sin'z  cosz /1 _sin?g I-32
The sign in front of the radical is chosen taking account of the inequality
cosz > 0 for |z| < 7/2.

arcsin’y =

Ezample 10. Reasoning as in the preceding example, one can show (taking
account of Example 9 of Sect. 4.2) that

arccos’y = — for |yl <1.

1
Vi-g
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Indeed,
arccos’ y = 1 __t __ ! -1
Y=oz smz Vi—cos?z  J1—42

The sign in front of the radical is chosen taking account of the inequality
sinz >0if0 < <.

Ezample 11. arctan’y = leﬂ’ y€R.
Indeed,
arctan’y = 1 1 _ cos’x = 1 -
y_tan’x_(ﬁé—x)_ T 1+tan?z 1492
Ezxample 12. arccot'y = —ﬁ, y€eR.
Indeed
arccot’y = 1 _ 1 = —sin’z = — 1 -1
y_cot’x_(—gglf—;)_ ~ l4cot?z  1+y2°

Ezample 18. We already know (see Examples 10 and 12 of Sect. 5.1) that
the functions y = f(z) = a® and =z = f~!(y) = log, y have the derivatives
f'(z) = a*na and (f71)(y) = L.

Let us see how this is consistent with Theorem 3:

s 111
Y w) = f'(z)  a®lna ylna’
fl(x): (f—ll)l(y) = ( 1} ) =ylna=axlna.
ylna

Ezxample 14. The hyperbolic and inverse hyperbolic functions and their
derivatives. The functions

sinhz = =(e® —e™%),

coshz = (e +e7%)

DN = DN =

are called respectively the hyperbolic sine and hyperbolic cosine® of x.
These functions, which for the time being have been introduced purely
formally, arise just as naturally in many problems as the circular functions
sinz and cosz.
We remark that

sinh(—z) = —sinhz,
cosh(—z) = coshz

8 From the Latin phrases sinus hyperbolici and cosinus hyperbolici.
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that is, the hyperbolic sine is an odd function and the hyperbolic cosine is
an even function.
Moreover, the following basic identity is obvious:

cosh®z —sinh?z =1.

The graphs of the functions y = sinha and y = coshx are shown in
Fig. 5.7.

y = coshz

Fig. 5.7.

It follows from the definition of sinh z and the properties of the function
e that sinhz is a continuous strictly increasing function mapping R in a
one-to-one manner onto itself. The inverse function to sinhz thus exists, is
defined on R, is continuous, and is strictly increasing.

This inverse is denoted arsinhy (read “area-sine of y”).° This function is
easily expressed in terms of known functions. In solving the equation

%(ez —e )=y
for z, we find successively
e =y+1+y2
(e* >0, and so e® # y — /1 + y2) and
z=In(y+/1+32).

Thus,
arsinhy =In (y++v/1+3?), yeR.

9 The full name is area sinus hyperbolici (Lat.); the reason for using the term area
here instead of arc, as in the case of the circular functions, will be explained
later.
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Similarly, using the monotonicity of the function y = coshz on the two
intervals R = {z € Rjz < 0} and Ry = {z € R|z > 0}, we can con-
struct functions arcosh _y and arcosh ;y, defined for y > 1 and inverse to
the function coshz on R_ and R respectively.

They are given by the formulas

arcosh_y = In(y — V32 - 1),
arcosh 4y = In (y + V2 - 1) .

From the definitions given above, we find

sinh’z = l(e“c +e7%) =coshz,

2
1
cosh'z = §(e’” —e %) =sinhz,
and by the theorem on the derivative of an inverse function, we find
arsinh’y = 1Lt ! = 1
Y= Gnh'z  coshz Vitsnhlz Vi+y?'
1 1 1 1
h/ = = = = — 3 > 1 P}
MY = o'z snhz  _Jeoshle =1 P -1 "
1 1 1
arcosh,y = = , y>1

cosh'z  sinhz Vcosh®z — 1 B V2 -1

These last three relations can be verified by using the explicit expressions
for the inverse hyperbolic functions arsinhy and arcoshy.
For example,

arsinh’y =

1 1
————(1+ (1 +yH) V2 2y) =
vt Tryg(+2( ) y)

_ 1 Vi+yP4y 1
y+vV1I+2 1+ ity

Like tan x and cot z one can consider the functions

inh h
tanhz = Sy and cothz = cf)s z ,
coshz sinhz
called the hyperbolic tangent and hyperbolic cotangent respectively, and also

the functions inverse to them, the area tangent

1. 14y
tanhy = =1 <1
artanhy = 5ln 772 <1,
and the area cotangent
1. y+1
ly| > 1.

Mmmy=§my 1
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We omit the solutions of the elementary equations that lead to these
formulas.
By the rules for differentiation we have

sinh’ z cosh z — sinh z cosh’ z

tanh’z = 5 =
cosh® x
coshz coshz —sinhzsinhz 1
cosh® z cosh’z ’
coth's — cosh’ zsinhz — coshzsinh'z
sinh? z
__ sinhzsinhz —coshzcoshz 1
sinh® z sinh®z
By the theorem on the derivative of an inverse function
1 1
artanh’z = e S T cosh® z =
tanh’ z ( cosh? z )
1 1
- 1 —tanh’z - 1—y2’ vl <1,
, 1 1 . 12
arcoth'z = — = I = —sinh“z =
coth’ z ( " sinh? x)

S TS

"~ coth’z—-1 21 v '
The last two formulas can also be verified by direct differentiation of the
explicit formulas for the functions artanhy and arcothy.

5.2.4 Table of Derivatives of the Basic Elementary Functions

We now write out (see Table 5.1) the derivatives of the basic elementary
functions computed in Sects. 5.1 and 5.2.

5.2.5 Differentiation of a Very Simple Implicit Function

Let y = y(t) and z = z(t) be differentiable functions defined in a neighbor-
hood U(tp) of a point tp € R. Assume that the function z = z(¢) has an
inverse t = t(z) defined in a neighborhood V' (z¢) of g = z(to). Then the
quantity y = y(¢), which depends on ¢, can also be regarded as an implicit
function of z, since y(t) = y(t(z)). Let us find the derivative of this func-
tion with respect to = at the point x, assuming that z'(to) # 0. Using the
theorem on the differentiation of a composite function and the theorem on
differentiation of an inverse function, we obtain

dy(t
2 W@) ) ) L _ vitto)
Flz=xo dx T=x0 dt le=to dz lz=ax0 dﬁ_gt) it (L‘é(to) )
=to

(Here we have used the standard notation f (x)|z=zo = f(x0).)
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Table 5.1.

. : . ' Restrictions on
Function f(z) Derivative f'(z) domain of z € R
1. C (const) 0
2. z¢ az®! z >0 for a € R

rze€RforaeN

3.a" a®lna ze€R(@>0,a#1)
4. log, |z| e z€R\0(a>0,a#1)
5. sinx cosx
6. cosx —sinx
7. tanx cTsll_x x# S +7k, kel
8. cotz sors x#nk, k€l
9. arcsinz L lz] <1

1—z2
10. arccosx S lz] <1

1—z2
11. arctanz H—lzg
12. arccot -
13. sinhx coshz
14. coshz sinh x
15. tanh z ﬁrz
16. cothz — s z#0

. _ > 1
17. arsinhz = In (z +vV1+zx ) T
18. arcoshz = In (z + Va2 — 1) :I:\/m;—_1 |z] > 1
19. artanhz = 1 In 142 ' lz] <1
20. arcothz = 3 In Zt1 - lz| > 1

If the same quantity is regarded as a function of different arguments, in

. order to avoid misunderstandings in differentiation, we indicate explicitly the

variable with respect to which the differentiation is carried out, as we have
done here.

Example 15. The law of addition of velocities. The motion of a point along
a line is completely determined if we know the coordinate x of the point in
our chosen coordinate system (the real line) at each instant ¢ in a system we
have chosen for measuring time. Thus the pair of numbers (x,t) determines
the position of the point in space and time. The law of motion is written in
the form of a function z = x(t).

Suppose we wish to express the motion of this point in terms of a different
coordinate system (Z, ). For example, the new real line may be moving uni-
formly with speed —v relative to the first system. (The velocity vector in this
case may be identified with the single number that defines it.) For simplicity
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we shall assume that the coordinates (0,0) refer to the same point in both
systems; more precisely, that at time £ = 0 the point # = 0 coincided with
the point x = 0 at which the clock showed ¢ = 0.

Then one of the possible connections between the coordinate systems (x, t)
and (%,f) describing the motion of the same point observed from different
coordinate systems is provided by the classical Galilean transformations:

= _ "
TTeT (5.29)
Let us consider a somewhat more general linear connection
T =azx+p0t,
t =~z +dt. (5:30)

assuming, of course, that this connection is invertible, that is, the determinant

of the matrix <a p
v 4

Let 2 = z(t) and # = #(f) be the law of motion for the point under
observation, written in these coordinate systems.

We remark that, knowing the relation = z(t), we find by formula (5.30)
that

) is not zero.

&(t) = az(t) + Bt ,

i(t) = ~alt) + ot (5:31)
and since the transformation (5.30) is invertible, after writing
z = ai + Ot
L0 .32
t = 3% + 6t , (5:32)
knowing = #(t), we find
a(t) = ai(f) + pt, (5.33)

t(f) = 42(1) + ot .

It is clear from relations (5.31) and (5.33) that for the given point there
exist mutually inverse functions ¢ = ¢(¢) and ¢ = #(t).
We now consider the problem of the connection between the velocities

dz(t)
dt

dz(f) .

V(t) = = &,(t) and V(t) = & = ER0)

of the point computed in the coordinate systems (z,t) and (&, t) respectively.
Using the rule for differentiating an implicit function and formula (5.31),
we have s q
dz it” _agFtp

AR SN S
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or
~ - aV({t)+p

where ¢ and ¢ are the coordinates of the same instant of time in the systems
(z,t) and (Z,t). This is always to be kept in mind in the abbreviated notation

~ aV+p
V="Vrs (5.35)

for formula (5.34).
In the case of the Galilean transformations (5.29) we obtain the classical
law of addition of velocities from formula (5.35)

V=V+uv. (5.36)

It has been established experimentally with a high degree of precision (and
this became one of the postulates of the special theory of relativity) that in
a vacuum light propagates with a certain velocity ¢ that is independent of
the state of motion of the radiating body. This means that if an explosion
occurs at time t = £ = 0 at the point z = % = 0, the light will reach the
points z with coordinates such that z2 = (ct)? after time ¢ in the coordinate
system (z,t), while in the system (Z,?) this event will correspond to time #
and coordinates #, where again 7% = (ct)?.

Thus, if 22 — ¢?t2 = 0, then Z2 — ct? = 0 also, and conversely. By virtue of
certain additional physical considerations, one must consider that, in general

22t =32 - 22 (5.37)

z°—c
if (x,t) and (Z,%) correspond to the same event in the different coordinate
systems connected by relation (5.30). Conditions (5.37) give the following
relations on the coefficients a, (3, v, and § of the transformation (5.30):

a?— Py =1,
aB—c*v6 =0, (5.38)
ﬂ2 _ 0252 — _C2

If ¢ = 1, we would have, instead of (5.38),

-2 =1,
B
g=% (5.39)
ﬂ2_62=_15

from which it follows easily that the general solution of (5.39) (up to a change
of sign in the pairs (a,3) and (v, d)) can be given as

a=-coshy, ~y=sinhy, [=sinhy, §=coshy,

where ¢ is a parameter.
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The general solution of the system (5.38) then has the form
o B\ ([ coshy csinhey
76 ) \ isinhy coshep
and the transformation (5.30) can be made specific:

Z = coshypz + csinhpt,
5 (5.40)
t = %sinhgox-{-cosh(pt.

This is the Lorentz transformation.

In order to clarify the way in which the free parameter ¢ is determined,
we recall that the Z-axis is moving with speed —wv relative to the z-axis, that
is, the point Z = 0 of this axis, when observed in the system (z, t) has velocity
—v. Setting Z = 0 in (5.40), we find its law of motion in the system (z,t):

z = —ctanh gt .

Therefore,
tanh ¢ = % . (5.41)

Comparing the general law (5.35) of transformation of velocities with the
Lorentz transformation (5.40), we obtain

7= cosh@V + csinh g
~ LsinhgV +coshy’
or, taking account of (5.41),
~ V4
V= . 5.42
1+ % (542)

Formula (5.42) is the relativistic law of addition of velocities, which for
[vV| < c?, that is, as ¢ — 0o, becomes the classical law expressed by formula
(5.36).

The Lorentz transformation (5.40) itself can be rewritten taking account
of relation (5.41) in the following more natural form:

T+ vt
T = T
1-(2)
(5.43)
- t+ %
f= 1Ee?

2 b
1-(2)
from which one can see that for |v| < ¢, that is, as ¢ — oo, they become the
classical Galilean transformations (5.29).
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5.2.6 Higher-order Derivatives

If a function f : F — R is differentiable at every point = € E, then a new
function f’ : E — R arises, whose value at a point z € E equals the derivative
f'(z) of the function f at that point.

The function f’ : E — R may itself have a derivative (f')’ : E —» Ron E,
called the second derivative of the original function f and denoted by one of
the following two symbols:

1" d2
), SO

and if we wish to indicate explicitly the variable of differentiation in the first
case, we also write, for example, f. ().

Definition. By induction, if the derivative f(~1)(z) of order n — 1 of f has
been defined, then the derivative of order n is defined by the formula

§0 ) i= (£ (@)
The following notations are conventional for the derivative of order n:

(n) d"f(z)
1@, L8

Also by convention, f(O(z) := f(z).

The set of functions f : E — R having continuous derivatives up to order
n inclusive will be denoted C(™ (E,R), and by the simpler symbol C(™)(E),
or C™*(E,R) and C™(E) respectively wherever no confusion can arise.

In particular C()(E) = C(E) by our convention that f©(z) = f(z).

Let us now -consider some examples of the computation of higher-order
derivatives.

Examples

f(=z) f'(z) f"(z) o ARICY)
16) a” a®lna a®In%a e a®ln"a
17) € e® &® e®
18) sinz cosz —sinz . sin(z + nm/2)
19) cosz —sinz —cosz e cos(z + nm/2)
20)(1+2)* a(l+2)*! ala—1)1+z)*72 .- ala—1)---

(a=n+1)Q+z)*™™

21) z® ar®™? ala—1)2*"2 ... ala—1)---(a—n+1)z>"
22) log, |z| e lz? %la("-l)!w—n

23) In|z| z 7! (-1z~2 =D Y -1z
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Ezample 2. Leibniz’ formula. Let u(z) and v(z) be functions having deriva-
tives up to order n inclusive on a common set E. The following formula of
Leibniz holds for the nth derivative of their product:

()™ = 3 (Z) unm)ym) (5.44)

m=0

Leibniz’ formula bears a strong resemblance to Newton’s binomial for-
mula, and in fact the two are directly connected.

Proof. For n = 1 formula (5.44) agrees with the rule already established for
the derivative of a product.

If the functions v and v have derivatives up to order n+ 1 inclusive, then,
assuming that formula (5.44) holds for order n, after differentiating the left-
and right-hand sides, we find

n

n
(uv)(n+l) — Z (Z) u(n—m+1)v(m) + Z (Z) u(n—m)v(m+l) _

m=0 m=0
n
= (n+1)(0) n n ((n+1)—=k),, (k) (0)y(n+1) —
=u v +};((k)+(k—l)>u v+ Ut =
n+1

_ ("Z 1 ) QD)= ()
k=0

Here we have combined the terms containing like products of derivatives
of the functions u and v and used the binomial relation (Z) + ( k ﬁ 1) =
n+1
k .
Thus by induction we have established the validity of Leibniz’ formula. O
Ezample 25. If P,(z) = co + c12 + - - - + cpz™, then
Pn (0) = C,
P.(z) = c1+2cox+ -+ ncyz™  and P.(0) =c; ,

P)(z) = 2co+3-2c3z+ -+ n(n— 1)c,z™ 2 and P2(0) = 2!cz ,
P®(z) = 3-2c5+---n(n—1)(n—2)c,z" % and P®(0) = 3lcs ,

P™(z) = n(n—1)(n—2)---2c, and P (0) = nle, ,
P®)(z) = 0fork>n.

Thus, the polynomial P,(z) can be written as

1 1 L ) m
P, (z) = PO(0) + ﬁP,gl>(o)ac + 513,52) )z + -+ HP,S )(0)z™ .
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Ezample 26. Using Leibniz’ formula and the fact that all the derivatives of
a polynomial of order higher than the degree of the polynomial are zero, we
can find the nth derivative of f(z) = z%sinz:

™ (z) =sin™(z) - 2% + (T) sin®Vg. 2z + (g) sin®2z.2 =

=a:2$in(x+ng)+2na:sin(x+(n—1)g)+( n(n—1) sm(a:-i—n ))

= (22 — n(n — 1)) si ™\ = il
= (z* — n(n —1))sin (x+n2) 2nx cos (a:+n2)
Ezample 27. Let f(z) = arctanz. Let us find the values f(™)(0)

(n=1,2,...).

Since f'(z) = H%x, it follows that (1 + 22)f'(z) = L.

Applying Leibniz’ formula to this last equality, we find the recursion re-
lation

(14 2?) f"+D(z) + 2nzf™ (z) + n(n — 1) D(z) =0,

from which one can successively find all the derivatives of f(z).
Setting = = 0, we obtain

FOD(0) = —n(n — 1) f"~1(0) .

For n = 1 we find f(#(0) = 0, and therefore f (2n) (0) = 0. For derivatives
of odd order we have

FE™D(0) = —2m(2m — 1) f*™ 1 (0)
and since f'(0) = 1, we obtain
FEm(0) = ()" (2m)!

Ezample 28. Acceleration. If z = z(t) denotes the time dependence of a point
mass moving along the real line, then dx(t) = &(t) is the velocity of the point,

and then dﬁ(tt) = —dj%-tl = i(t) is its acceleratlon at time ¢.

If z(t) = ot + B3, then z(t) = a and Z(t) = 0, that is, the acceleration in
a uniform motion is zero. We shall soon verify that if the second derivative
equals zero, then the function itself has the form at + . Thus, in uniform
motions, and only in uniform motions, is the acceleration equal to zero.

But if we wish for a body moving under inertia in empty space to move
uniformly in a straight line when observed in two different coordinate systems,
it is necessary for the transition formulas from one inertial system to the other
to be linear. That is the reason why, in Example 15, the linear formulas (5.30)
were chosen for the coordinate transformations.
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Ezxample 29. The second derivative of a simple implicit function. Let y = y(t)
and x = z(t) be twice-differentiable functions. Assume that the function
x = z(t) has a differentiable inverse function ¢ = ¢(z). Then the quantity y(t)
can be regarded as an implicit function of z, since y = y(t) = y(t(z)). Let us
find the second derivative yl, assuming that z’(t) # 0.

By the rule for differentiating such a function, studied in Subsect. 5.2.5,
we have

y, =%
x =
Tt
so that
’ 7 ” ’ 7 1
1\/ Yt w 7" "o
Y = (yl). = (¥2): _ (mé)t — @) Tl — Tul
T z/x / / / /\3 °
Tt Tt Tt (%)

We remark that the explicit expressions for all the functions that occur
here, including v/, depend on ¢, but they make it possible to obtain the value
of y2. at the particular point z after substituting for ¢ the value ¢ = t(x)
corresponding to the value z.
For example, if y = et and z = Int, then
/ ot AV R
S AR )

We have deliberately chosen this simple example, in which one can ex-
plicitly express ¢t in terms of x as t = e* and, by substituting ¢ = e into
y(t) = e, find the explicit dependence of y = €* on z. Differentiating this
last function, one can justify the results obtained above.

It is clear that in this way one can find the derivatives of any order by
successively applying the formula

y(n) _ (yg(;:ll )):
zn l'é

5.2.7 Problems and Exercises

1. Let ap, a1, ..., an be given real numbers. Exhibit a polynomial P,(z) of degree
n having the derivatives PP (z0) = ok, k=0,1,...,n, at a given point zo € R.
2. Compute f'(z) if

exp | — ;15 for #0,
a) f(z) = ( ) ;
0 forz =0

a:2sin% forxz #0,
b) f(z) =
0 forz=0.
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c) Verify that the function in part a) is infinitely differentiable on R, and that
F™(0) =o.

d) Show that the derivative in part b) is defined on R but is not a continuous
function on R. ’

e) Show that the function

exp(—m;—ﬁ—_%)g) for —1<z<1,
fl=) =
0 for 1 < |z|

is infinitely differentiable on R.

3. Let f € C(*)(R). Show that for = # 0

sarn(2) - ()

4. Let f be a differentiable function on R. Show that
a) if f is an even function, then f’ is an odd function;
b) if f is an odd function, then f’ is an even function;
c) (f' is odd) < (f is even).

5. Show that

a) the function f(z) is differentiable at the point zo if and only if f(z)— f(zo0) =
p(x)(x — zo0), where ¢(z) is a function that is continuous at zo (and in that case
¢(z0) = f'(x0));

b) if f(z) — f(zo) = ¢(z)(z — z0) and ¢ € C("_l>(U(xo)), where U(zo) is a

neighborhood of zo, then f(z) has a derivative (f(™ (zo)) of order n at zo.

6. Give an example showing that the assumption that f~! be continuous at the
point yo cannot be omitted from Theorem 3.

7. a) Two bodies with masses m; and mg respectively are moving in space under
the action of their mutual gravitation alone. Using Newton’s laws (formulas (5.1)
and (5.2) of Sect. 5.1), verify that the quantity

E= (%mw%+%m2v§> + (—G@) =K+U,

where v1 and v2 are the velocities of the bodies and r the distance between them,
does not vary during this motion.
b) Give a physical interpretation of the quantity £ = K +U and its components.
c) Extend this result to the case of the motion of n bodies.
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5.3 The Basic Theorems of Differential Calculus

5.3.1 Fermat’s Lemma and Rolle’s Theorem

Definition 1. A point 2o € E C R is called a local mazimum (resp. local
minimum) and the value of a function f : E — R at that point a local
mazimum value (resp. local minimum value) if there exists a neighborhod
Ug(zg) of 2o in E such that at any point z € Ug(zo) we have f(x) < f(zo)

(resp. f(z) = f(xo))-
Definition 2. If the strict inequality f(z) < f(zo) (resp. f(z) > f(zo))

o
holds at every point z € Ug(zg) \ zo = Ug(zo), the point z, is called strict
local mazimum (resp. strict local minimum) and the value of the function
f: E = R a strict local mazimum value (resp. strict local minimum value).

Definition 3. The local maxima and minima are called local extrema and
the values of the function at these points local extreme values of the function.

Ezample 1. Let
22 if —1<zr<2,

f(z)=
4, if2<z

(see Fig. 5.8). For this function

x = —1 is a strict local maximum;

z = 0 is a strict local minimum;

z = 2 is a local maximum;
the points £ > 2 are all local extrema, being simultaneously maxima and
minima, since the function is locally constant at these points.

=N W ke
T

1 1

-1 0 1 2 3 =z
Fig. 5.8.

Ezample 2. Let f(z) =sin2 on the set E =R\ 0.
The points z = (% + 2k7r)_1, k € Z, are strict local maxima, and the

points z = (— % + 2k7r)_1, k € Z, are strict local minima for f(z) (see
Fig. 4.1).
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Definition 4. An extremum zy € F of the function f : F — R is called an
interior extremum if zy is a limit point of both sets E_ = {z € E|z < zo}
and E; = {x € E|z > z0}. :

In Example 2, all the extrema are interior extrema, while in Example 1
the point £ = —1 is not an interior extremum.

Lemma 1. (Fermat). If a function f : E — R is differentiable at an interior
extremum, xo € E, then its derivative at xg is 0: f'(zo) = 0.

Proof. By definition of differentiability at zo we have
f(zo + R) — f(zo) = f'(z0)h + a(zo; R)R

where a(zo;h) > 0ash -z, 2o+ h € E.
Let us rewrite this relation as follows:

f(zo+h) — f(zo) = [f'(avo) + a(zo; h)]h (5.45)

Since xg is an extremum, the left-hand side of Eq. (5.45) is either non-
negative or nonpositive for all values of h sufficiently close to 0 and for which
o+ heE.

If f'(zo) # 0, then for h sufficiently close to 0 the quantity f'(zo)+a(zo; h)
would have the same sign as f'(zo), since a(zg;h) > 0ash — 0, zg+h € E.

But the value of h can be both positive or negative, given that x is an
interior extremum.

Thus, assuming that f'(xo) # 0, we find that the right-hand side of (5.45)
changes sign when h does (for h sufficiently close to 0), while the left-hand
side cannot change sign when h is sufficiently close to 0. This contradiction
completes the proof. 0O

Remarks on Fermat’s Lemma 1°. Fermat’s lemma thus gives a necessary
condition for an interior extremum of a differentiable function. For noninterior
extrema (such as the point z = —1 in Example 1) it is generally not true
that f/(z¢) = 0.

20, Geometrically this lemma is obvious, since it asserts that at an extremum
of a differentiable function the tangent to its graph is horizontal. (After all,
f'(x0) is the tangent of the angle the tangent line makes with the z-axis.)

30, Physically this lemma means that in motion along a line the velocity must

be zero at the instant when the direction reverses (which is an extremum!).
This lemma and the theorem on the maximum (or minimum) of a contin-

uous function on a closed interval together imply the following proposition.

Proposition 1. (Rolle’s!® theorem). If a function f : [a,b] — R is contin-
uous on a closed interval [a,b] and differentiable on the open interval ]a, b
and f(a) = f(b), then there exists a point & €]a,b[ such that f'(£) = 0.

10 M. Rolle (1652-1719) - French mathematician.
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Proof. Since the function f is continuous on [a, b], there exist points Zp,, zpr €
[a,b] at which it assumes its minimal and maximal values respectively. If
f(zm) = f(zn), then the function is constant on [a,b]; and since in that
case f'(z) = 0, the assertion is obviously true. If f(z,,) < f(zn), then, since
f(a) = f(b), one of the points z,, and zps must lie in the open interval ]a, b.
We denote it by £. Fermat’s lemma now implies that f'(§) =0. O

5.3.2 The theorems of Lagrange and Cauchy on finite increments

The following proposition is one of the most frequently used and important
methods of studying numerical-valued functions.

Theorem 1. (Lagrange’s finite-increment theorem). If a function f : [a,b]
— R is continuous on a closed interval [a,b] and differentiable on the open
interval ]a, b|, there exists a point & €|a, b] such that

[f(®) - f(a) = f(€)(b—a) .| (5.46)

Proof. Consider the auxiliary function

b) — f(a
Fe) = f@) - 10O g,
—a
which is obviously continuous on the closed interval [a, b] and differentiable on
the open interval ]a, b] and has equal values at the endpoints: F(a)=F(b)=

f(a). Applying Rolle’s theorem to F(z), we find a point £ €]a, b[ at which

) - @) _,

Fe=reo-2=—_L% 0.0

Remarks on Lagrange’s Theorem 1° In geometric language Lagrange’s
theorem means (see Fig. 5.9) that at some point (¢, f(€)), where & €]a, b,

Yy
1))

fap----

[ S

o
Q [---
175 2 W

Fig. 5.9.
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the tangent to the graph of the function is parallel to the chord joining the
points (a, f(a)) and (b, f(b)), since the slope of the chord equals £ bl);i (a)

20. If z is interpreted as time and f(b) — f(a) as the amount of displacement
over the time b—a of a particle moving along a line, Lagrange’s theorem says
that the velocity f’(z) of the particle at some time & €]a, b[ is such that if
the particle had moved with the constant velocity f’(£) over the whole time
interval, it would have been displaced by the same amount f(b) — f(a). It is
natural to call f'(£€) the average velocity over the time interval [a, b].

3%. We note nevertheless that for motion that is not along a straight line
there may be no average speed in the sense of Remark 2°. Indeed, suppose
the particle is moving around a circle of unit radius at constant angular
velocity w = 1. Its law of motion, as we know, can be written as

r(t) = (cost,sint) .

Then
r(t) = v(t) = (—sint,cost)

and |v| = v/sin®t + cos2t = 1.
The particle is at the same point r(0) = r(27) = (1,0) at times ¢ = 0 and
t = 2m, and the equality

r(2m) —r(0) = v(§)(2r — 0)

would mean that v(£) = 0. But this is impossible.

Even so, we shall learn that there is still a relation between the displace-
ment over a time interval and the velocity. It consists of the fact that the full
length L of the path traversed cannot exceed the maximal absolute value of
the velocity multiplied by the time interval of the displacement. What has
just been said can be written in the following more precise form:

[r(b) —r(a)| < sup [E(t)][b—al. (5.47)
t€)a,b[

As will be shown later, this natural inequality does indeed always hold.
It is also called Lagrange’s finite-increment theorem, while relation (5.46),
which is valid only for numerical-valued functions, is often called the Lagrange
mean-value theorem (the role of the mean in this case is played by both the
value f/(€) of the velocity and by the point £ between a and b).

49, Lagrange’s theorem is important in that it connects the increment of a
function over a finite interval with the derivative of the function on that
interval. Up to now we have not had such a theorem on finite increments and
have characterized only the local (infinitesimal) increment of a function in
terms of the derivative or differential at a given point.
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Corollaries of Lagrange’s Theorem

Corollary 1. (Criterion for monotonicity of a function). If the derivative of
a function is nonnegative (resp. positive) at every point of an open interval,
then the function is nondecreasing (resp. increasing) on that interval.

Proof. Indeed, if 1 and z2 are two points of the interval and z; < 2, that
is, z2 — 21 > 0, then by formula (5.46)

f(z2) — f(z1) = f'(€)(m2 — z1) , where 1 < € < 29,

and therefore, the sign of the difference on the left-hand side of this equality
is the same as the sign of f/'(£§). O

Naturally an analogous assertion can be made about the nonincreasing
(resp. decreasing) nature of a function with a nonpositive (resp. negative)
derivative.

Remark. By the inverse function theorem and Corollary 1 we can conclude,
in particular, that if a numerical-valued function f(z) on some interval I
has a derivative that is always positive or always negative, then the function
is continuous and monotonic on I and has an inverse function f~! that is
defined on the interval I’ = f(I) and is differentiable on it.

Corollary 2. (Criterion for a function to be constant). A function that is
continuous on a closed interval [a,b] is constant on it if and only if its deriva-
tive equals zero at every point of the interval [a,b] (or only the open interval

la, b[).

Proof. Only the fact that f'(z) = 0 on ]a, b[ implies that f(z1) = f(z2) for
all 1,22, € [a,b] is of interest. But this follows from Lagrange’s formula,
according to which

f(@2) = f(=1) = f/(E)(z2 —21) =0,
since £ lies between z; and z2, that is, £ €]a,b[, and so f'(¢§) =0. O

Remark. From this we can draw the following conclusion (which as we shall
see, is very important for integral calculus): If the derivatives Fj(z) and
Fj(z) of two functions Fi(x) and Fa(z) are equal on some interval, that is,
F|(z) = Fj(z) on the interval, then the difference Fy(z) — F»(z) is constant.

The following proposition is a useful generalization of Lagrange’s theorem,
and is also based on Rolle’s theorem.

Proposition 2. (Cauchy’s finite-increment theorem). Let x = z(t) and
y = y(t) be functions that are continuous on a closed interval [, 8] and
differentiable on the open interval |, B[
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Then there exists a point T € [a, 5] such that

(1) (y(B) - y(@)) = ' (7)(2(B) - z(a)) -
If in addition '(t) # 0 for each t €]a, B, then z(a) # z(B) and we have the

.
e y(0) = 3le) _ ¥(r)
sB) ol ~ T

Proof. The function F(t) = z(t)(y(8) —y(a)) —y(t) (z(8) —z()) satisfies the
hypotheses of Rolle’s theorem on the closed interval [o, 3]. Therefore there
exists a point 7 €], B[ at which F'(7) = 0, which is equivalent to the equality
to be proved. To obtain relation (5.48) from it, it remains only to observe
that if 2/(t) # 0 on e, B], then z(a) # z(B), again by Rolle’s theorem. O

(5.48)

Remarks on Cauchy’s Theorem 1°. If we regard the pair xz(t),y(t) as
the law of motion of a particle, then (z'(t),y'(t)) is its velocity vector at
time ¢, and (z(8) — z(a),y(B) — y(«)) is its displacement vector over the
time interval [a, 3]. The theorem then asserts that at some instant of time
T € [, B] these two vectors are collinear. However, this fact, which applies to
motion in a plane, is the same kind of pleasant exception as the mean-velocity
theorem in the case of motion along a line. Indeed, imagine a particle moving
at uniform speed along a helix. Its velocity makes a constant nonzero angle
with the vertical, while the displacement vector can be purely vertical (after
one complete turn).

20, Lagrange’s formula can be obtained from Cauchy’s by setting r=2z(t)=t,
y(t) = y(z) = f(z),a=a, B =0

5.3.3 Taylor’s Formula

From the amount of differential calculus that has been explained up to this
point one may obtain the correct impression that the more derivatives of
two functions coincide (including the derivative of zeroth order) at a point,
the better these functions approximate each other in a neighborhood of that
point. We have mostly been interested in approximations of a function in the
neighborhood of a point by a polynomial P,(z) = P,(zo;z) = ¢o + c1(z —
Zo) + -+ + cn(z — o)™, and that will continue to be our main interest. We
know (see Example 25 in Subsect. 5.2.6) that an algebraic polynomial can be
represented as

/ (n)
Pa(z) = Pa(zo) + 200 (¢ gg) 4. 4 P2 (20)

1! (I_xO)n ’

that is, ¢k, = &kfml, (k=0,1,...,n). This can easily be verified directly.
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Thus, if we are given a function f(x) having derivatives up to order n
inclusive at xg, we can immediately write the polynomial

f'(20)
1!

whose derivatives up to order n inclusive at the point xy are the same as the
corresponding derivatives of f(x) at that point.

Po(20;7) = Po(e) = f(z0)+

™) (g
@—zo) -+ (o gy (5.49)

Definition 5. The algebraic polynomial given by (5.49) is the Taylor'! poly-
nomial of order n of f(x) at xg.

We shall be interested in the value of
f(2) = Pa(20; ) = n(z0; 7) (5.50)

of the discrepancy between the polynomial P,(z) and the function f(z),
which is often called the remainder, more precisely, the nth remainder or the
nth remainder term in Taylor’s formula:

f/

f(@) = f(zo) +

(n)
—zo) 4+ fT(;ro)(:L‘ —20)" + Tn(Zo; T) -

(5.51)
The equality (5.51) itself is of course of no interest if we know nothing
more about the function 7, (zg; ) than its definition (5.50).
We shall now use a highly artificial device to obtain information on the
remainder term. A more natural route to this information will come from the
integral calculus.

Theorem 2. If the function f is continuous on the closed interval with end-
points o and x along with its first n derivatives, and it has a derivative of
order n + 1 at the interior points of this interval, then for any function ¢
that is continuous on this closed interval and has a nonzero derivative at its
interior points, there exists a point £ between xo and T such that

ra(ansz) = LA s €)@ — g (5.52)

Proof. On the closed interval I with endpoints g and = we consider the
auxiliary function

F(t) = f(z) - Pu(t; 2) (5.53)

of the argument ¢. We now write out the definition of the function F(¢) in
more detail:

FO) = f@) - |0+ L@t 4+

(n)
fT!(t)(x - t)“] . (5.54)

1 B. Taylor (1685-1731) — British mathematician.
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We see from the definition of the function F(t) and the hypotheses of the
theorem that F' is continuous on the closed interval I and differentiable at
its interior points, and that

f’(t) f”(t)( 5 — f”(t)(

F(t) = [f (t) - 94

f/ll (t)

(n+1) (n+1)
(w ) +m(x—t)n] =—M(x—t)n.

n! n!

Applying Cauchy’s theorem to the pair of functions F(t), ¢(t) on the
closed interval I (see relation (5.48)), we find a point ¢ between xg and z at

which
F(z) - Flz) _ F'(€)
o(z) —p(xo)  ¢'(€)
Substituting the expression for F’(£) here and observing from comparison
of formulas (5.50), (5.53) and (5.54) that F(z) — F(zo) = 0 — F(zo) =
—rn(2z0; ), we obtain formula (5.52). O

Setting ¢(t) = z — t in (5.52), we obtain the following corollary.

Corollary 1. (Cauchy’s formula for the remainder term).

a(z0;2) = )@ — "z - 20) (559)

A particularly elegant formula results if we set ¢(¢) = (z—t)"*! in (5.52):

Corollary 2. (The Lagrange form of the remainder).

(@05 7) = ——— fTD(€)(z — z0)" T (5.56)

T (n+ +1)'

We remark that when zo = 0 Taylor’s formula (5.51) is often called
MacLaurin’s formula.'?
Let us consider some examples.

Ezample 3. For the function f(z) = e* with o = 0 Taylor’s formula has the
form

1 1 1
e =1+ l'z—l- gx +oe Hx" +7r,(0;2) , (5.57)
and by (5.56) we can assume that
1
. — £ . Lntl

where |¢| < |z|.

12 C. MacLaurin (1698-1746) — British mathematician.
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Thus

ef - |z < (| |+1), . (5.58)

But for each fixed z € R, if n — oo, the quantity %, as we know (see Ex-

ample 12 of Subsect. 3.1.3), tends to zero. Hence it follows from the estimate
(5.58) and the definition of the sum of a series that

[rn(0;2)| =

1
(n+1)!

11 1,
o =14 ot oo’ oot —al e (5.59)

for all z € R.

Example 4. We obtain the expansion of the function a* for any a, 0 < a,
a # 1, similarly:
-1 Ina In®a 22 In"a
@ =1t et e et
Ezample 5. Let f(z) = sinz. We know (see Example 18 of Subsect. 5.2.6)
that f(™)(z) = sin (z+Zn), n € N, and so by Lagrange’s formula (5.56) with
2o = 0 and any z € R we find

rn(0;2) = m sin ({ + g(n + 1))1:’”r1 , (5.60)

from which it follows that r,(0;z) tends to zero for any z € R as n — oo.
Thus we have the expansion

1 1 5 ( 1) 2n+1
sinz =z 3'1‘ + = 5% -+ (2n+1)'x + (5.61)

for every z € R.

Ezample 6. Similarly, for the function f(z) = cosz, we obtain

. _ 1 z n+1
a(052) = (o 008 (5 +50n+ 1))z (5.62)
and ) ) ( 1)
= — — — 4 —_— .«
cosz =1 2|a: + YTk (2 )| ™ 4 (5.63)
for x € R.

Ezample 7. Since sinh’ z = coshz and cosh’ z = sinh z, formula (5.56) yields
the following expression for the remainder in the Taylor series of f(z) =

sinh z:
1

(n — 1)!f(n+1)(€)xn+1 ,

’I'n(O; :L') =
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where f("*t1)(¢) = sinh¢ if n is even and f™*+1V(¢) = cosh¢ if n is odd.
In any case |f™+1(€)| < max {|sinhz|, | coshz|}, since |¢| < |z|. Hence for
any given value z € R we have r,(0;z) — 0 as n — oo, and we obtain the
expansion

1

sinhw=z+%x3+%x5+~-+(2—n+—1)!x2n+1+'-' , (5.64)
valid for all z € R.
Ezxample 8. Similarly we obtain the expansion
Lo, 14 L on
cosha:=1+ﬁa: +Ix +--~+(2—n)!x +ee (5.65)

valid for any z € R.

Ezample 9. For the function f(z) = In(14-z) we have f()(z)= %Zﬁm,

so that the Taylor series of this function at zo = 0 is

1o 13, (="t .
ln(1+a:)=x—§w + oz —~~+Ta: + 7, (0;2) . (5.66)

3

This time we represent 7, (0; z) using Cauchy’s formula (5.55):

m00) = S @ - €,
or _ n
ro(0;) = (—1)%(‘;—:?) , (5.67)

where £ lies between 0 and x.
If |z| < 1, it follows from the condition that £ lies between 0 and z that

w—&’ |lz| — 1&] _ || = [€] 1—|z| 1—|z|
_ < —1- <1- —lz|. (5.68
el = Tive = Tog o Ta s e e e
Thus for |z| < 1
rn (05 2)] < 2|™*, (5.69)
and consequently the following expansion is valid for |z| < 1:
1 1 -1
1n(1+x)=z—§w2+§x3—-~+( 2& "+ (5.70)

We remark that outside the closed interval |z| < 1 the series on the right-
hand side of (5.70) diverges at every point, since its general term does not
tend to zero if |z| > 1.
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Ezample 10. For the function (1 + z)®, where o € R, we have f(™(z) =
afa—1)---(a—n+1)(1+2z)*~ ™, so that Taylor’s formula at zo = 0 for this
function has the form

1+z)* = 1+%w+a—(a—2'_—1—)z2+m

e n|(a —m D on b (@2) . (571)

Using Cauchy’s formula (5.55), we find

(@=1)---(a=n)
n!

ra(0;2) = = 1+9* " e -z, (5.72)
where £ lies between 0 and z.
If |z| < 1, then, using the estimate (5.68), we have

I (0;2)| < ‘a(l - %) (1 _ %)‘(1 4 £)a gL (5.73)

When n is increased by 1, the right-hand side of Eq. (5.73) is multiplied
by |(1 - nL_H)x| But since |z| < 1, we shall have |(1 — ;%7)z| < ¢ < 1,
independently of the value of «, provided |z| < ¢ < 1 and n is sufficiently
large.

It follows from this that r,(0;z) — 0 as n — oo for any o € R and any
z in the open interval |z| < 1. Therefore the expansion obtained by Newton

(Newton’s binomial theorem) is valid on the open interval |z| < 1:

a@=1) o,  ala-D-(a=n+1) ,

(14+2)% = 1+ 22+ g+ (5.74)

1! 2! n!

We remark that d’Alembert’s test (see Paragraph b of Subsect. 3.1.4)
implies that for |z| > 1 the series (5.74) generally diverges if a ¢ N. Let us
now consider separately the case when a =n € N.

In this case f(z) = (1 + z)® = (1 + z)™ is a polynomial of degree n
and hence all of its derivatives of order higher than n are equal to 0. There-
fore Taylor’s formula, together with, for example, the Lagrange form of the
remainder, enables us to write the following equality:

n n(n —1) nn—1)---1
(1+x)”=1+ﬁx+Ta:2+---+Ta:n, (5.75)
which is the Newton binomial theorem known from high school for a natural-
number exponent:

(1+z)"=1+(?)x+(g)xz—i--'-—i-(Z)z".
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Thus we have defined Taylor’s formula (5.51) and obtained the forms
(5.52), (5.55), and (5.56) for the remainder term in the formula. We have
obtained the relations (5.58), (5.60), (5.62), (5.69), and (5.73), which enable
us to estimate the error in computing the important elementary functions
using Taylor’s formula. Finally, we have obtained the power-series expansions
of these functions.

Definition 6. If the function f(z) has derivatives of all orders n € N at a
point xg, the series

F(a0) + 317/ (@0)( = 20) + -+ + - FP(z0) (@ — o) + -+

is called the Taylor series of f at the point xg.

It should not be thought that the Taylor series of an infinitely differen-
tiable function converges in some neighborhood of zg, for given any sequence
€0yCly- - - 3Cn, - - - Of nuUmMbers, one can construct (although this is not simple
to do) a function f(z) such that f(™(zo) = c,, n € N.

It should also not be thought that if the Taylor series converges, it neces-
sarily converges to the function that generated it. A Taylor series converges
to the function that generated it only when the generating function belongs
to the class of so-called analytic functions.

Here is Cauchy’s example of a nonanalytic function:

eV ifx£0,
f(z) =
0, ifz=0.

Starting from the definition of the derivative and the fact that
zhe 1/ 5 0asz — 0, independently of the value of k& (see Example 30
in Sect. 3.2), one can verify that f(®)(0) = 0 for n = 0,1,2,.... Thus, the
Taylor series in this case has all its terms equal to 0 and hence its sum is
identically equal to 0, while f(z) # 0 if z # 0.

In conclusion, we discuss a local version of Taylor’s formula.

We return once again to the problem of the local representation of a
function f : E — R by a polynomial, which we began to discuss in Subsect.
5.1.3. We wish to choose the polynomial P,(zo;z) = 2o + c1(x — xo) +--- +
cn(T — x0)™ so as to have

f(z) = Pu(z) + 0((x - xo)”) asTr > x9,z€FE,
or, in more detail,

f@)=cotalz—=zo)+---+cn(z—z0)" + o((z - wo)")
as ¢ — g, z € E . (5.76)

We now state explicitly a proposition that has already been proved in all
its essentials.
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Proposition 3. If there exists a polynomial P,(zo;x) = co + c1(x — zo) +
o+ cp(x — 20)™ satisfying condition (5.76), that polynomial is unique.

Proof. Indeed, from relation (5.76) we obtain the coefficients of the polyno-
mial successively and completely unambiguously

co = limpsez, f(2),
_ 1 F(z)—co
c1 = limgsz—a, w—):to )

-_— “en L n—1
Cp = limEaz—mo 1@ [CO+(:_C;:)1n(z 7o) ] . 0O

‘We now prove the local version of Taylor’s theorem.

Proposition 4. (The local Taylor formula). Let E be a closed interval hav-
ing xo € R as an endpoint. If the function f : E — R has derivatives
' (xo), ..., f™(z0) up to order n inclusive at the point xo, then the following
representation holds:

(o)
1!

F™ (o)

n!
+o((z — z0)") as x = zo, x € E . (5.77)

f(@) = f(zo) + (z —zo)+---+ (z —z0)" +

Thus the problem of the local approximation of a differentiable function
is solved by the Taylor polynomial of the appropriate order.

Since the Taylor polynomial P, (zo; z) is constructed from the requirement
that its derivatives up to order n inclusive must coincide with the correspond-
ing derivatives of the function f at zo, it follows that f*)(z) —P,gk) (zo; o) =
0 (k=0,1,...,n) and the validity of formula (5.77) is established by the fol-
lowing lemma.

Lemma 2. If a function ¢ : E — R, defined on a closed interval E with
endpoint xq, is such that it has derivatives up to order n inclusive at o and

©(z0) = ¢'(20) = -+ = ™ (z0) = 0, then p(z) = o((z — zo)") as T — o,
z€EE.

Proof. For n =1 the assertion follows from the definition of differentiability
of the function ¢ at zg, by virtue of which

o(z) = p(x0) + ¢’ (z0)(z — x0) + 0(T — T0) S T = T0, T E F,
and, since ¢(zo) = ¢'(zo) = 0, we have
p(z) =o(x —xp) asz > zo, T € E .

Suppose the assertion has been proved for order n = k — 1 > 1. We shall
show that it is then valid for order n = k > 2.
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We make the preliminary remark that since

(k=1) () _ p(k=1)
M (z0) = (0®DV(z) = lim Lo (2) = 9" (20)
#P(zo) = (¢ ) (o) ESzma0 z— o ’

the existence of ¢(F)(2¢) presumes that the function p(*~1)(z) is defined on
E, at least near the point zp. Shrinking the closed interval E if necessary,
we can assume from the outset that the functions ¢(z), ¢'(z),..., "1 (z),
where k > 2, are all defined on the whole closed interval F with endpoint zq.
Since k > 2, the function ¢(z) has a derivative ¢'(z) on E, and by hypothesis

(¢') (@0) = -+~ = () *(wo) = 0.
Therefore, by the induction assumption,
() =o((x—20)* ) asz > zp, 2 € E.
Then, using Lagrange’s theorem, we obtain

(2) = p(z) — p(z0) = ¢'(€) (& — 20) = A§)(€ — 20)* V(2 — 20) ,

where £ lies between z¢ and z, that is, | — zo| < |z — zo|, and a(£) — 0 as
& = 20, £ € E. Hence as ¢ — xp, * € E, we have simultaneously £ — xy,
& € E, and «a(€) — 0. Since

lo(z)] < la(€)] |z — zo|*~ & — mo| ,
we have verified that
¢(z) =o((z — z0)*) asz = 20,z € E .

Thus, the assertion of Lemma 2 has been verified by mathematical induc-
tion. O

Relation (5.77) is called the local Taylor formula since the form of the
remainder term given in it (the so-called Peano form)

n(Z0; ) = o((z — z0)") , (5.78)

makes it possible to draw inferences only about the asymptotic nature of
the connection between the Taylor polynomial and the function as z — xg,
z € E.

Formula (5.77) is therefore convenient in computing limits and describing
the asymptotic behavior of a function as * — x¢, = € E, but it cannot help
with the approximate computation of the values of the function until some
actual estimate of the quantity r,(zo; z) = o((z — zo)™) is available.



228 5 Differential Calculus
Let us now summarize our results. We have defined the Taylor polynomial

f'(zo) F™ (o)
1!

n!

Py (zo;x) = f(20) + (x —zo) + -+ + (z — z0)"

written the Taylor formula

f'(zo)
1

f(z) = f(zo) + (@ —@o) + -+ + = (z — 20)" + Tu(20; ) ,
and obtained the following very important specific form of it:
If f has a derivative of order n + 1 on the open interval with endpoints

zo and z, then

@) = 1(e0) + 2000~ zg) 4 4 L) oy
e
m(l‘—xo) + ,(5.79)

where £ is a point between xo and x.
If f has derivatives of orders up to n > 1 inclusive at the point g, then

£(&) = F@o)+ 75 (o). 410 @) )(“”0)( 20)"+o((z—20)") . (5.80)

Relation (5.79), called Taylor’s formula with the Lagrange form of the
remainder, is obviously a generalization of Lagrange’s mean-value theorem,
to which it reduces when n = 0.

Relation (5.80), called Taylor’s formula with the Peano form of the re-
mainder, is obviously a generalization of the definition of differentiability of
a function at a point, to which it reduces when n = 1.

We remark that formula (5.79) is nearly always the more substantive of
the two. For, on the one hand, as we have seen, it enables us to estimate
the absolute magnitude of the remainder term. On the other hand, when, for
example, f("+1)(z) is bounded in a neighborhood of zo, it also implies the
asymptotic formula

£@) = £(o0) + L (@ =) oo+ I oy (@ = )
(5.81)
Thus for infinitely differentiable functions, with which classical analysis deals
in the overwhelming majority of cases, formula (5.79) contains the local for-
mula (5.80).
In particular, on the basis of (5.81) and Examples 3-10 just studied, we
can now write the following table of asymptotic formulas as z — 0:
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11 1
e =1+—z+—a’+- +—w"+0(z”+1),

1 2
_ 1 1 ( l)n 2n 2n+2
cosz =1 Tk +4| -+ @2n)! +O0(z ),
. 1 5 154 (=" 2t 2n+3
Sing = - +5$ - +(2n+1)' "4+ Oz ),

1 1
coshz = 1+§w +Ix + - +(2__)_'_z2n+0($2n+2),
i = 1 1 _ 2n+1 2n+3
sinha = o+ ot 4 gat bk Gy HOET,

_1\n
In(l+z) =z - ;w +;z3 ~~+%w"+0(w"+1)

o o ala—1) , ala—1)---(a—n+1) o
1+zx) _1+ﬁz+—2! i ]

+0(a™).

Let us now consider a few more examples of the use of Taylor’s formula.

Example 11. We shall write a polynomial that makes it possible to compute
the values of sinz on the interval —1 < z < 1 with absolute error at most
1073.
One can take this polynomial to be a Taylor polynomial of suitable degree
obtained from the expansion of sinz in a neighborhood of o = 0. Since
=D

1 1
sinz =z — gz + = =] x5 —. (2n n 1)| 2 0. 222 Ly 0(0;2)

where by Lagrange’sformula

sin (§ + 5(@2n+ 3)) g2+
(2n + 3)! ’

Tont2(0; ) =

we have, for |z| < 1,
1
0;2)| £ =
|7'2n+2( ,l')l = (2n—|—3)' )

But m <1073 for n > 2. Thus the approximation sinz ~ z — 3 + 4z°
has the required precision on the closed interval |z| < 1.

Ezample 12. We shall show that tanz = z + 12° + o(z®) as z — 0. We have
tan’z = cos 2z,

tan” z = 2cos 3 zsinz,

—4 2

tan” z = 6cos 4 zsin?z + 2cos 2z .

Thus, tan0 = 0, tan’ 0 = 1, tan” 0 = 0, tan” 0 = 2, and the relation now
follows from the local Taylor formula.
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Ezample 13. Let o > 0. Let us study the convergence of the series
o0

>~ Incos n%, For oo > 0 we have n% — 0 as n — oo. Let us estimate the
n=1

order of a term of the series:

o =13 ko) = s +o)-

Thus we have a series of terms of constant sign whose terms are equivalent
e}
to those of the series > 5=3=. Since this last series converges only for a > 1,
n=1
when a > 0 the original series converges only for oo > % (see Problem 15b)
below).

Ezample 14. Let us show that Incosz = —12% — $a* — £25 + O(2®) as

z — 0.
This time, instead of computing six successive derivatives, we shall use
the already-known expansions of cosz as £ — 0 and In(1 + u) as u — 0:

Incosz = In (1 - lzz + lw‘* - izﬁ +0(z?®)) =In(1 +u) =

2! 4! 6!
_ 1o 153 an_(_ 1o 1 4 15 8\ _
=u—gu +3u +O(u)—( 51 % + a7 Gi® +O(z ))
_E(Wz _2.Mx +O(x ))+§<—Wx +O(=x ))—

Example 15. Let us find the values of the first six derivatives of the function
Incosz at x = 0.

We have (Incos)'z = =SBZ and it is therefore clear that the function
has derivatives of all orders at 0, since cos0 # 0. We shall not try to find
functional expressions for these derivatives, but rather we shall make use

of the uniqueness of the Taylor polynomial and the result of the preceding

example.
If
fix)=co+ciz+---+cpz" +o0(z") asz — 0,
then *)
Ck = ! kl(O) and f*)(0) = kley .

Thus, in the present case we obtain

(Incos)(0) =0, (Incos)(0) =0, (Incos)”(0) = —% 2,

(Incos)®(0) = 0, (Incos)®(0) = —1—12 4,
(Incos)®(0) =0, (Incos)®(0) = L 6!.

45



5.3 The Basic Theorems of Differential Calculus 231

Ezample 16. Let f(x) be an infinitely differentiable function at the point zg,
and suppose we know the expansion

fl@)=ch+ i+ +dz™ + 0@

of its derivative in a neighborhood of zero. Then, from the uniqueness of the
Taylor expansion we have

(f)*)(0) = kic}, ,

and so f*+1)(0) = k!c,. Thus for the function f(z) itself we have the expan-
sion
e nlc),

f(x)=f(0)+i—é:$+—x 4t

n+1 n+2
2 mrn® TOET,

or, after simplification,

_ < ¢ o Cnnt1 n+2
f(w)_f(0)+1:v-l-2a:+ +n+1z + O(z"+9) .
Ezample 17. Let us find the Taylor expansion of the function f(z) = arctanz

at 0.
Since f'(z) = 1757 = (1+2?)7! = 1-2?+a* — - -+ (=1)"z** + O(2>"+?),
by the considerations explained in the preceding example,

f(z) = f(0) + LIS + los_ ceet ﬂ:ﬁ"“ + O(z?™+3)
1 3 5 2n+1 ’
that is,
— 13 15 (=" 2nt1 2n+3
arctanr = 37 —{-5.7: +2n+1z + O(z*") .

Ezample 18. Similarly, by expanding the function arcsin’z = (1 — 22)~1/2

. by Taylor’s formula in a neighborhood of zero, we find successively,

—3 (=31 »

(1+u)_1/2:1+TU+_§TU +--- 4+
D Y S | T N S 1
+ 3(-3 )nl( g —nt )un+0(un+l)’
1 1-3
_ p2)1/2 2.2 4., ..
(1= =14 22 + e 4+ +
1-3---(2n—1)
o ( ] w2n + O(:E2n+2) ,
arcsina:=z+——1—a;3+ 1-3 4+

2.3 22.2!.5
(2n -1

2n+1 2n+3
GiEnr° | ToET),
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or, after elementary transformations,

— 1.3 [3”]2 [(2n — D)2 2n+1 2n+3
arcsinz = z+3|a: + = ] S @nt 1) x + O(z*" ™).

Here 2n—1)!':=1-3---(2n—1) and 2n)!! :=2-4---(2n).
Ezxample 19. We use the results of Examples 5, 12,17, and 18 and find

. arctanz —sinz . [z— 32® + O(z%)] — [z — 32° + O(z%)]
lim —— = lim 7 T =
z-0 tanz —arcsinz  =—0 [z 4 323 + O(25)] — [z + 323 + O(2f)]

_1.3 10} 5
_ iy 85 10E)

z—0 éwi‘ + O(z5)

5.3.4 Problems and Exercises

1. Choose numbers a and b so that the function f(z) = cosz — i_";—‘;z; is an in-

finitesimal of highest possible order as x — 0.

2. Find lim o[1 - (3%)7]:

3. Write a Taylor polynomial of €” at zero that makes it possible to compute the
values of e® on the closed interval —1 < z < 2 within 1073,
4. Let f be a function that is infinitely differentiable at 0. Show that

a) if f is even, then its Taylor series at O contains only even powers of z;

b) if f is odd, then its Taylor series at 0 contains only odd powers of z.

5. Show that if f € C°)[—1,1] and ™ (0) = 0 forn = 0,1,2,..., and there exists

a number C such that sup ]f(")(z)] <n!C for n €N, then f =0 on [-1,1].
—1<z<

6. Let f € C™ (] -1, 1[) and sup |f(z)| < 1. Let mg(I) = inf |f*)(x)|, where
—1<z<1 z€l

I is an interval contained in | — 1, 1[. Show that

a) if I is partitioned into three successive intervals I1, I, and I3 and u is the
length of I, then

mi () < i(mk—l(ll) +mk-1(13)> ;

b) if I has length )\, then
ok(k+1)/2k

PO

c) there exists a number @, depending only on n such that if | f'(0)| > an, then
the equation f(™(z) = 0 has at least n — 1 distinct roots in | — 1, 1[.

Hint: In part b) use part a) and mathematical induction; in c) use a) and prove
by induction that there exists a sequence zx, < zk, < --- < xx, of points of the
open interval ] — 1,1[ such that f®(zx,) - f*)(zx,,,) <Ofor 1 <i<k-—1.

mk(I) S
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7. Show that if a function f is defined and differentiable on an open interval I and
[a,b] C I, then

a) the function f'(z) (even if it is not continuous!) assumes on [a,d] all the
values between f'(a) and f'(b) (the theorem of Darbouz)'?;

b) if f”(z) also exists in ]a, b[, then there is a point £ €]a, b[ such that f'(b) —
f'(@) = f"()(b-a).
8. A function f(x) may be differentiable on the entire real line, without having a
continuous derivative f’(z) (see Example 7 in Subsect. 5.1.5).

a) Show that f’(z) can have only discontinuities of second kind.

b) Find the flaw in the following “proof” that f’(z) is continuous.

Proof. Let zo be an arbitrary point on R and f'(xo) the derivative of f at the point
xo. By definition of the derivative and Lagrange’s theorem

') = tim LELZTED) i pr6) = im 16,

T—xQ r—X T—x0

where £ is a point between zo and = and therefore tends to zo as z — xzo. O

9. Let f be twice differentiable on an interval I. Let Mo = sup|f(z)|, M1 =
z€l
sup |f'(z)| and Mz = sup |f"(z)|. Show that
ze€l zel
a) if I = [—a, a], then
z? +a?
2a

M,
F@)l < 20+ TS gy

{ M < 2¢/MoM; , if the length of I is not less than 21/Mo/M- ,
b)

M, < V2MoM, , f I =R;

c) the numbers 2 and v/2 in part b) cannot be replaced by smaller numbers;
d) if f is differentiable p times on R and the quantities Mo and M, =

sup |f®(z)| are finite, then the quantities My = sup|f®)(z)|, 1 < k < p, are
+ z€R z€R
also finite and

M, < 2k(P—k)/2M01—k/PM:/P .
Hint: Use Exercises 6b) and 9b) and mathematical induction.

10. Show that if a function f has derivatives up to order n + 1 inclusive at a point

zo and fV(z0) # 0, then in the Lagrange form of the remainder in Taylor’s
formula

rn(zo;z) = Elif(n) (730 +0(z — xO)) (z—z0)",

where 0 < 0 < 1 and the quantity 6 = 6(z) tends to n;+1 as T — To.

13 G. Darboux (1842-1917) — French mathematician.
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11. Let f be a function that is differentiable n times on an interval I. Prove the
following statements.

a) If f vanishes at (n + 1) points of I, there exists a point £ € I such that
™ =o.

b) If z1, 2, ..., zp are points of the interval I, there exists a unique polynomial
L(z) (the Lagrange interpolation polynomial) of degree at most (n — 1) such that
f(z;) = L(z:), ¢ = 1,...,n. In addition, for z € I there exists a point £ € I such
that

@) - L) = L= (22 2n) ooy

¢) If z1 < z2 < --- <z, are points of I and n;, 1 < ¢ < p, are natural numbers
such that ny +no + - +np, =n and f®(x;) = 0 for 0 < k < n; — 1, then there
exists a point ¢ in the closed interval [z1,z,] at which f("~1(¢) = 0.

d) There exists a unique polynomial H(z) (the Hermite interpolating polyno-
mial)'* of degree (n—1) such that f®)(x;) = H® (x;) for 0 < k < n;— 1. Moreover,
inside the smallest interval containing the points x and z;, i = 1,...,p, there is a
point £ such that

(a;—xl)nl...(z_

n!

(En)np f(n)(g) .

This formula is called the Hermite interpolation formula. The points xz;, i =
1,...,p, are called interpolation nodes of multiplicity n; respectively. Special cases
of the Hermite interpolation formula are the Lagrange interpolation formula, which
is part b) of this exercise, and Taylor’s formula with the Lagrange form of the
remainder, which results when p = 1, that is, for interpolation with a single node
of multiplicity n.

f(@) = H(z) +

12. Show that

a) between two real roots of a polynomial P(z) with real coefficients there is a
root of its derivative P’(z);

b) if the polynomial P(z) has a multiple root, the polynomial P’'(z) has the
same root, but its multiplicity as a root of P’(z) is one less than its multiplicity as
a root of P(z);

¢) if Q(z) is the greatest common divisor of the polynomials P(x) and P'(z),
where P’(z) is the derivative of P(z), then the polynomial gi(% has the roots of
P(z) as its roots, all of them being roots of multiplicity 1.

13. Show that
a) any polynomial P(z) admits a representation in the form co + ¢1(x — zo) +

et en(@ — o)

b) there exists a unique polynomial of degree n for which f(z) — P(z) = o((a: —

a:o)") as F 3 z — zo. Here f is a function defined on a set E and z is a limit
point of E.

4 Ch. Hermite (1822-1901) — French mathematician who studied problems of anal-
ysis; in particular, he proved that e is transcendental.
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14. Using induction on k, 1 < k, we define the finite differences of order k of the
function f at zo:

A’ f(zo; 1) := Af(zo; 1) = f(@o + h1) — f(o) ,
A% f(zo; ha, he) := AAf(zo; ha, he) =
= (F(@0 +ha + ha) = f(z0 + ha)) = (F(@o + h1) = f(z0)) =
= f(®o + h1 + h2) — f(zo + h1) — f(zo + h2) + f(z0) ,

where gi.(z) = A f(z; hi) = fz + b)) — f(z).

a) Let f € C" V[a,b] and suppose that f(™(z) exists at least in the open
interval ]a, b[. If all the points zo, Zo + h1,Zo+h2, o+ h1+h2,...,zo+h1+---+hn
lie in [a, b], then inside the smallest closed interval containing all of them there is a
point € such that :

A" f(z0; b1y -y ha) = F™(E)h1 - P .

b) (Continuation.) If f(™(z,) exists, then the following estimate holds:
A" f(z03 bty -+ hn) = £ (@0)hr -+ ha| <

: S?P,,Jf(”(z) = £™(@o)| - Iha] -+ |hn]
z€|a,

c) (Continuation.) Set A" f(zo; A, ...,h) =: A™f(zo; h™). Show that if F™ (zo)
exists, then
A" f(zo; h™)
hn )
d) Show by example that the preceding limit may exist even when f(™ (zo) does

not exist.
Hint: Consider, for example, A2 f(0; h?) for the function

z3sin%,z#0,
flz) =
0, z=0,

™ (p) = ki
f7 (o) = lim

and show that A2f( hz)
. 0; _
M e 0

15. a) Applying Lagrange’s theorem to the function x%, where o > 0, show that

the inequality
1 1 1 1
< — —_—
nlte "~ g\(n-1)* no

holds for n € N and a > 0.

o0
b) Use the result of a) to show that the series > -% converges for o > 1.
n=1
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5.4 The Study of Functions Using the Methods
of Differential Calculus

5.4.1 Conditions for a Function to be Monotonic

Proposition 1. The following relations hold between the monotonicity prop-
erties of a function f : E — R that is differentiable on an open interval
la, b= E and the sign (positivity) of its derivative f' on that interval:

f'(z) >0 = [ isincreasing = f'(z) >0,
f'(z) 20 = f is nondecreasing = f'(z) >0,
flz)=0 = f = const. = f'l(z)=0,
f'(z) £0 = f is nonincreasing = f'(z) <0,
f'(z) <0 = fisdecreasing = f'(z) <0.

Proof. The left-hand column of implications is already known to us from
Lagrange’s theorem, by virtue of which f(z2)— f(z1) = f'(£)(z2 — 1), where
Z1,T2 €]a,b] and £ is a point between z; and z3. It can be seen from this
formula that for z; < z2 the difference f(z2) — f(z1) is positive if and only
if f'(¢) is positive.

The right-hand column of implications can be obtained immediately from
the definition of the derivative. Let us show, for example, that if a function
f that is differentiable on ]a, b[ is increasing, then f’(z) > 0 on ]a, b[. Indeed,

o) = tim LE TR I

If h > 0, then f(z + h) — f(z) > 0; and if h < 0, then f(z + h) — f(z) <0
Therefore the fraction after the limit sign is positive.
Consequently, its limit f'(x) is nonnegative, as asserted. O

Remark 1. Tt is clear from the example of the function f(z) = z3 that a
strictly increasing function has a nonnegative derivative, not necessarily one
that is always positive. In this example, f/(0) = 3w2|z=0 =0.

Remark 2. In the expression A = B, as we noted at the appropriate point,
A is a sufficient condition for B and B a necessary condition for A. Hence,
one can make the following inferences from Proposition 1.

A function is constant on an open interval if and only if its derivative is
identically zero on that interval.

A sufficient condition for a function that is differentiable on an open
interval to be decreasing on that interval is that its derivative be negative at
every point of the interval.

A necessary condition for a function that is differentiable on an open in-
terval to be nonincreasing on that interval is that its derivative be nonpositive
on the interval.
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Ezample 1. Let f(z) = 2> — 3z +2 on R. Then f'(z) = 322 — 3 = 3(2? — 1),
and since f'(z) < 0 for |z| < 1 and f’(z) > O for |z| > 1, we can say that the
function is increasing on the open interval | — oo, —1][, decreasing on | — 1, 1],
and increasing again on |1, 4+o0].

5.4.2 Conditions for an Interior Extremum of a Function

Taking account of Fermat’s lemma (Lemma 1 of Sect. 5.3), we can state the
following proposition.

Proposition 2. (Necessary conditions for an interior extremum). In order
for a point xy to be an extremum of a function f : U(zo) — R defined on
a neighborhood U(xo) of that point, a necessary condition is that one of the
following two conditions hold: either the function is not differentiable at xo

or f'(zo) = 0.
Simple examples show that these necessary conditions are not sufficient.

Ezample 2. Let f(z) = z° on R. Then f’(0) = 0, but there is no extremum
at g = 0.

FEzxample 3. Let
xz forx >0,
flz) =

2z forx < 0.

This function has a bend at 0 and obviously has neither a derivative nor
an extremum at 0.

Ezample 4. Let us find the maximum of f(z) = z2 on the closed interval

[—2,1]. It is obvious in this case that the maximum will be attained at the
endpoint —2, but here is a systematic procedure for finding the maximum. We
find f'(z) = 2z, then we find all points of the open interval | — 2, 1[ at which

" f'(z) = 0. In this case, the only such point is z = 0. The maximum of f(z)
must be either among the points where f'(z) = 0, or at one of the endpoints,
about which Proposition 2 is silent. Thus we need to compare f(—2) = 4,
f(0) =0, and f(1) = 1, from which we conclude that the maximal value of
f(z) = 2% on the closed interval [—2,1] equals 4 and is assumed at —2, which
is an endpoint of the interval.

Using the connection established in Subsect. 5.4.1 between the sign of
the derivative and the nature of the monotonicity of the function, we arrive
at the following sufficient conditions for the presence or absence of a local
extremum at a point.
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Proposition 3. (Sufficient conditions for an extremum in terms of the first
derivative). Let f : U(zo) — R be a function defined on a neighborhood
U(xo) of the point xo, which is continuous at the point itself and differentiable

in a deleted neighborhood Uo'(aco). Let Uo"(aco) = {z € U(zo)|z < z0} and

Ut (zo) = {z € U(zo)|z > z0}.
Then the following conclusions are valid:

a) (Yz € U~ (z0) (f'(z) < 0)) A (Vz € U (z0) (f'(z) < 0)) =
= (f has no extremum at xo);

b) (Y2 € U (20) (f'(z) < 0)) A (Y2 € U (z0) (f'(2) > 0)) =
= (zo is a strict local minimum of f);

¢) (vVz € U~ (20) (f'(z) > 0)) A (Vz € U*(z0) (f'(z) < 0)) =
= (zo is a strict local mazimum of f);

d) (Vz € U~ (z0) (f'(z) > 0)) A (Vz € U*(z0) (f'(z) > 0)) =

= (f has no extremum at o).

Briefly, but less precisely, one can say that if the derivative changes sign
in passing through the point, then the point is an extremum, while if the
derivative does not change sign, the point is not an extremum.

We remark immediately, however, that these sufficient conditions are not
necessary for an extremum, as one can verify using the following example.

Example 5. Let
2¢% + z?sin L forz #0,
f(z) =
0 forx=0.

Since z2 < f(z) < 222, it is clear that the function has a strict local
minimum at zo = 0, but the derivative f'(z) = 4z + 2z sin 2 — cos L is not of
constant sign in any deleted one-sided neighborhood of this point. This same
example shows the misunderstandings that can arise in connection with the

abbreviated statement of Proposition 3 just given.

We now turn to the proof of Proposition 3.

Proof. a) It follows from Proposition 2 that f is strictly decreasing on Uo' ~(xo)-
Since it is continuous at zo, we have lim f(z) = f(zo), and conse-
l}‘ (z0)dz—20

quently f(z) > f(zo) for z € (j’ ~(xo). By the same considerations we have

f(zo) > f(z) for z € ﬁ *(zo). Thus the function is strictly decreasing in the
whole neighborhood U(zo) and z¢ is not an extremum.
b) We conclude to begin with, as in a), that since f(x) is decreasing on

Uo" (zo) and continuous at zo, we have f(z) > f(zo) for z € Uo"(xo). We



5.4 Differential Calculus Used to Study Functions 239

conclude from the increasing nature of f on Uo' *(zo) that f(zo) < f(z) for

T € (j'+(xo). Thus f has a strict local minimum at zo.
Statements ¢) and d) are proved similarly. O

Proposition 4. (Sufficient conditions for an extremum in terms of higher-
order derivatives). Suppose a function f : U(zo) — R defined on a neighbor-
hood U(xo) of o has derivatives of order up to n inclusive at zo (n > 1).

If fl(mo) = -+ = f»U(zp) = 0 and f™(x0) # 0, then there is no
extremum at xo if n is odd. If n is even, the point xg is a local extremum,
in fact a strict local minimum if f(xo) > 0 and a strict local mazimum if
f™(z0) < 0.

Proof. Using the local Taylor formula
F(@) = f(zo) = ™ (@0)(z — z0)" + a(z)(z — 20)" , (5.82)

where a(z) — 0 as £ — xo, we shall reason as in the proof of Fermat’s lemma.
We rewrite Eq. (5.82) as

F(@) = f(zo) = (f™ (z0) + a(z)) (z — z0)™ - (5.83)

Since f(™(zo) # 0 and a(z) — 0 as £ — xo, the sum (™ (z0) + a(x) has
the sign of f(™(z) when z is sufficiently close to zo. If n is odd, the factor
(x — o)™ changes sign when x passes through zo, and then the sign of the
right-hand side of Eq. (5.83) also changes sign. Consequently, the left-hand
side changes sign as well, and so for n = 2k 4 1 there is no extremum.

If n is even, then (z — z¢)® > 0 for z # zp and hence in some small
neighborhood of zg the sign of the difference f(z) — f(zo) is the same as the
sign of f(")(xy), as is clear from Eq. (5.83). O

Let us now consider some examples.

 Ezample 6. The law of refraction in geometric optics (Snell’s law).'® Accord-
ing to Fermat’s principle, the actual trajectory of a light ray between two
points is such that the ray requires minimum time to pass from one point to
the other compared with all paths joining the two points.

It follows from Fermat’s principle and the fact that the shortest path
between two points is a straight line segment having the points as endpoints
that in a homogeneous and isotropic medium (having identical structure at
each point and in each direction) light propagates in straight lines.

Now consider two such media, and suppose that light propagates from
point A; to As, as shown in Fig. 5.10.

5 W. Snell (1580-1626) — Dutch astronomer and mathematician.
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Az
h2
0 o7 a
S Ry 3
A T T
Fig. 5.10.

If ¢; and ¢y are the velocities of light in these media, the time required to
traverse the path is

1 1
t(z) = —/h? + 22 + —1/h3 + (a — z)2.
(z) o T4z o Vhs (a —x)

We now find the extremum of the function t(z):

t'(x)

1 x _l a—<
c1vh?+22 c2./h3+(a—1x)2

which in accordance with the notation of the figure, yields cl_1 sina; =
c; ' sinag.

It is clear from physical considerations, or directly from the form of the
function ¢(z), which increases without bound as z — oo, that the point
where t'(z) = 0 is an absolute minimum of the continuous function ¢(z).

Thus Fermat’s principle implies the law of refraction % = %

=0,

Ezample 7. We shall show that for z > 0

z*—ar+a—-1<0, whenO0<a<l, (5.84)
z*—ar+a—-1>0, whena<0orl<a. (5.85)

Proof. Differentiating the function f(z) = z* — az + o — 1, we find f'(z) =
a(z® ! — 1) and f'(z) = 0 when z = 1. In passing through the point 1 the
derivative passes from positive to negative values if 0 < a < 1 and from
negative to positive values if & < 0 or a > 1. In the first case the point 1 is
a strict maximum, and in the second case a strict minimum (and, as follows
from the monotonicity of f on the intervals 0 < z < 1 and 1 < z, not merely
a local minimum). But f(1) = 0 and hence both inequalities (5.84) and (5.85)
are established. In doing so, we have even shown that both inequalities are
strict if x #1. O

We remark that if = is replaced by 1 + z, we find that (5.84) and (5.85)
are extensions of Bernoulli’s inequality (Sect. 2.2; see also Problem 2 below),
which we already know for a natural-number exponent a.
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By elementary algebraic transformations one can obtain a number of clas-
sical inequalities of great importance for analysis from the inequalities just
proved. We shall now derive these inequalities.

a. Young’s inequalities.!® If a > 0 and b > 0, and the numbers p and q
such that p # 0,1, ¢ # 0,1 and % + % =1, then

11

a/Pp/1 < Za +Zb, ifp>1, (5.86)
P

QV/Pp/a > %a + éb’ iFp<i, (5.87)

and equality holds in (5.86) and (5.87) only when a = b.

Proof. 1t suffices to set = ¢ and a = 7 in (5.84) and (5.85), and then

introduce the notation % =1

b. Holder’s inequalities.!” Let z; > 0,y; >0,i=1,...,n, and % +% =1.

Then
Xn:xiyi < (wa) l/p(ny) Ve forp>1, (5.88)
i=1 i=1

i=1
and " " N
1/p 1/q
Z%%Z(Zﬁ) (ny) forp<1,p#0. (5.89)
=1 i=1 i=1
In the case p < 0 it is assumed in (5.89) that z; > 0 (i = 1,...,n). FEqual-

ity is possible in (5.88) and (5.89) only when the vectors (z¥,...,z%) and
(4, ...,y2) are proportional.

Proof. Let us verify the inequality (5.88). Let X = > 2zf > 0and Y =

i=1
n
> y# > 0. Setting a = %(Z and b= % in (5.86), we obtain

i=1

_ T lw_f+l£
XYrylea —pX " qY

Summing these inequalities over i from 1 to n, we obtain
n
<ye <1
which is equivalent to relation (5.88).

6 W. H. Young (1882-1946) — British mathematician.
17 0. Holder (1859-1937) — German mathematician.
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We obtain (5.89) similarly from (5.87). Since equality occurs in (5.86) and
(5.87) only when a = b, we conclude that it is possible in (5.88) and (5.89)
only when a proportionality z¥ = AyJ or yJ = Az? holds. O

c. Minkowski’s inequalities.'® Let z; >0, y; >0,i=1,...,n. Then

n

(j;(xi + yi)”)l/p < (;x”) Ty (gyf)up whenp>1,  (5.90)

and
n

(Z(x,+yz)p) l/p (Z )UP (Zyz) whenp < 1,p#0. (5.91)

i=1 i=1

Proof. We apply Holder’s inequality to the terms on the right-hand side of
the identity

n

n n
Y @i+ v = milwi+y)P T+ Y vilwi+w)
i=1 =1 i=1
The left-hand side is then bounded from above (for p > 1) or below (for
p < 1) in accordance with inequalities (5.88) and (5.89) by the quantity

(g xf) l/p(g(wi + yi)p) Ha + (gyﬁ’) l/p( g:‘(wi + yi)P) ta )

n 1/q
After dividing these inequalities by (Z(wz + yi)”) , we arrive at (5.90)
i=1

and (5.91).

Knowing the conditions for equality in Holder’s inequalities, we verify
that equality is possible in Minkowski’s inequalities only when the vectors
(z1,...,2,) and (y1,...,Yn) are collinear. O

For n = 3 and p = 2, Minkowski’s inequality (5.90) is obviously the
triangle inequality in three-dimensional Euclidean space.

Ezxample 8. Let us consider another elementary example of the use of higher-
order derivatives to find local extrema. Let f(x) = sinz. Since f'(z) = cosz
and f(z) = —sinz, all the points where f’(z) = cosz = 0 are local extrema
of sinz, since f”’(z) = —sinx # 0 at these points. Here f”/(z) < 0 if sinz > 0
and f”(z) > 0 if sinz < 0. Thus the points where cosz = 0 and sinz > 0
are local maxima and those where cosz = 0 and sinz < 0 are local minima
for sinz (which, of course, was already well-known).

18 H. Minkowski (1864-1909) — German mathematician who proposed a mathe-
matical model adapted to the special theory of relativity (a space with a sign-
indefinite metric).
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5.4.3 Conditions for a Function to be Convex

Definition 1. A function f :]a,b[— R defined on an open interval ]a, b[C R
is convex if the inequalities

flaizy + azz2) < oqf(z1) + aaf(z2) (5.92)

hold for any points z;,z2 €]a,b[ and any numbers a; > 0, ap > 0 such that
aj + ap = 1. If this inequality is strict whenever z; # x2 and ajas # 0, the
function is strictly convez on ]a, b|.

Geometrically, condition (5.92) for convexity of a function f :]a,b[— R
means that the points of any arc of the graph of the function lie below the
chord subtended by the arc (see Fig. 5.11).

(22, f(2))
(alzl + oo, alf(:lfl) + 012f(1«'2))

A
8
=
8
~
~

I
! 1
| 1
I I
1 1 1
1 T =0171 + a2x2 T2

Fig. 5.11.

In fact, the left-hand side of (5.92) contains the value f(z) of the function
at the point r = a1z1 + aaza € [r1,22] and the right-hand side contains
the value at the same point of the linear function whose (straight-line) graph
passes through the points (z1, f(z1)) and (z2, f(z2)).

Relation (5.92) means that the set E = {(z,y) € R?|z €]a, b, f(z) < y}
of the points of the plane lying above the graph of the function is convex;
hence the term “convex”, as applied to the function itself.

Definition 2. If the opposite inequality holds for a function f :]a,b[— R,
that function is said to be concave on the interval ]a, b, or, more often, convex
upward in the interval, as opposed to a convex function, which is then said
to be convex downward on |a, b[.

Since all our subsequent constructions are carried out in the same way
for a function that is convex downward or convex upward, we shall limit
ourselves to functions that are convex downward.

We first give a new form to the inequality (5.92), better adapted for our
purposes.
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In the relations z = a 7 + asxs, a; + as = 1, we have

ro — X r— X1
a=——, Q2= —-,
T2 — X1 T2 — 1

so that (5.92) can be rewritten as

r— X1

fz) < flz2) .

x

Xo — X
x1) +
2 xlf( ) T2 — T1

Taking account of the inequalities ; < z < z3 and z; < x5, we multiply by
T9 — x1 and obtain

(2 — 2)f(21) + (21 — 22) f(2) + (T — 1) f(22) 2 0.

Remarking that zo — 21 = (z2 — =) + (z — z1) we obtain from the last
inequality, after elementary transformations,

(@) = f@1) _ f(@2) - f(a) (5.93)

T — I To— X

for 21 < ¢ < z2 and any x1,x2 €]a,b|.

Inequality (5.93) is another way of writing the definition of convexity of
the function f(z) on an open interval a, b[. Geometrically, (5.93) means (see
Fig. 5.11) that the slope of the chord I joining (1, f(z1)) to (z, f(z)) is not
larger than (and in the case of strict convexity is less than) the slope of the
chord II joining (z, f(z)) to (z2, f(x2))-

Now let us assume that the function f :]a,b[— R is differentiable on ]a, b[.
Then, letting z in (5.93) tend first to z;, then to z2, we obtain

f(z2) — f(=1)

T2 — X1

fl(z1) < < fl(x2)

which establishes that the derivative of f is monotonic.
Taking this fact into account, for a strictly convex function we find, using
Lagrange’s theorem, that

1(@) = @) _ f(zs)— 1)

r— 2 o — X

flz1) < f'(&) = f(&) < f(z2)
for z; < & < x < & <z, that is, strict convexity implies that the derivative
is strictly monotonic.

Thus, if a differentiable function f is convex on an open interval a, b],
then f’ is nondecreasing on ]a, b[; and in the case when f is strictly convex,
its derivative f’ is increasing on ]a, b[.

These conditions turn out to be not only necessary, but also sufficient for
convexity of a differentiable function.
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In fact, for a < z; < £ < z2 < b, by Lagrange’s theorem

T — Iy To—Z

= f'(&),

where 1 < & < T < & < xo; and if f/(&1) < f'(&2), then condition (5.93)
for convexity holds (with strict convexity if f'(£&1) < f'(£2))-
‘We have thus proved the following proposition.

Proposition 5. A necessary and sufficient condition for a function f :
la,b[— R that is differentiable on the open interval ]a,b[ to be convez (down-
ward) on that interval is that its derivative f' be nondecreasing on la,b[. A
strictly increasing f' corresponds to a strictly convex function.

Comparing Proposition 5 with Proposition 3, we obtain the following
corollary.

Corollary. A necessary and sufficient condition for a function f :]a,b[— R
having a second derivative on the open interval ]a, b[ to be convex (downward)
on |a, b is that f"(x) > 0 on that interval. The condition f"(x) > 0 on ]a,b|
is sufficient to guarantee that f is strictly convex.

We are now in a position to explain, for example, why the graphs of
the simplest elementary functions are drawn with one form of convexity or
another.

Ezxample 9. Let us study the convexity of f(z) = z* on the set z > 0. Since
f"(z) = a(a—1)z*~2, we have f”(x) > 0 for o < 0 or & > 1, that is, for these
values of the exponent o the power function z? is strictly convex (downward).
For 0 < a < 1 we have f”(z) < 0, so that for these exponents it is strictly
convex upward. For example, we always draw the parabola f(z) = z2 as
convex downward. The other cases @ = 0 and a = 1 are trivial: z° = 1 and
z! = z. In both of these cases the graph of the function is a ray (see Fig. 5.18

on p. 253).

Ezample 10. Let f(z) = a®, 0 < a, a # 1. Since f”(z) = a®*In*a > 0, the
exponential function a® is strictly convex (downward) on R for any allowable
value of the base a (see Fig. 5.12).

Ezample 11. For the function f(z) = log,  we have f”(z) = ——z1—, so that
the function is strictly convex (downward) if 0 < a < 1, and strictly convex
upward if 1 < a (see Fig. 5.13).

Ezample 12. Let us study the convexity of f(z) = sinz (see Fig. 5.14).

Since f”(z) = —sinz, we have f”(z) < 0 on the intervals 7 - 2k < z <
w(2k +1) and f’(z) > 0 on 7(2k — 1) < =z < 7 -2k, where k € Z. It
follows from this, for example, that the arc of the graph of sin z on the closed
interval 0 < z < T lies above the chord it subtends everywhere except at the
endpoints; therefore sinx > %x for0<z < 3.
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We now point out another characteristic of a convex function, geometri-
cally equivalent to the statement that a convex region of the plane lies entirely
on one side of a tangent line to its boundary.

Proposition 6. A function f :]a,b[— R that is differentiable on the open
interval ]a, b[ is convex (downward) on |a,b| if and only if its graph contains
no points below any tangent drawn to it. In that case, a necessary and suffi-
cient condition for strict convexity is that all points of the graph except the
point of tangency lie strictly above the tangent line.

Proof. Necessity. Let 2o €]a, b[. The equation of the tangent line to the
graph at (:co, f (xo)) has the form

y = f(xo) + f'(x0)(x — z0) ,

so that
f(@) —y(z) = f(z) — flwo) — f'(zo)(x — z0) = (f'(€) — f'(w0)) (& — o) ,

where £ is a point between = and zo. Since f is convex, the function f'(z) is
nondecreasing on ]a, b[ and so the sign of the difference f(£) — f'(zo) is the
same as the sign of the difference x — zo. Therefore f(z) — y(z) > 0 at each
point z €]a,b[. If f is strictly convex, then f’ is strictly increasing on ]a, b[
and so f(z) — y(z) > 0 for z €]a,b] and z # xo.
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Sufficiency. If the inequality
f(@) —y(@) = f(2) — f(z0) — f'(z0)(z — 20) 2 0 (5.94)

holds for any points z, zg €]a, b, then

w < f'(zo) forz <z,
IO =10 5 f(a) forzo <.

Thus, for any triple of points z1,z,z2 €]a,b[ such that z; < < 5 we

obtain
f@) = 1) _ f@) = ()

T —T - To — X

,

and strict inequality in (5.94) implies strict inequality in this last relation,
which, as we see, is the same as the definition (5.93) for convexity of a func-
tion. O

Let us now consider some examples.

Example 13. The function f(z) = e” is strictly convex. The straight line
y = z+1 is tangent to the graph of this function at (0, 1), since f(0) =e® =1
and f'(0) = e’”|m=0 = 1. By Proposition 6 we conclude that for any z € R

€ >1+zx,
and this inequality is strict for z # 0.

Ezxample 14. Similarly, using the strict upward convexity of Inz, one can
verify that the inequality
Inz<z-1

holds for z > 0, the inequality being strict for x # 1.

In constructing the graphs of functions, it is useful to distinguish the
points of inflection of a graph.

Definition 3. Let f : U(zo) — R be a function defined and differentiable on
a neighborhood U(xzo) of zo € R. If the function is convex downward (resp.
upward) on the set U- (zo) = {z € U(zo)|z < 2o} and convex upward (resp.

downward) on (}"'(xo) = {z € U(zo)|z > o}, then (o, f(z0)) is called a
point of inflection of the graph.

Thus when we pass through a point of inflection, the direction of convexity
of the graph changes. This means, in particular, that at the point (wo, f (xo))
the graph of the function passes from one side of the tangent line to the other.
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An analytic criterion for the abscissa z of a point of inflection is easy to
surmise, if we compare Proposition 5 with Proposition 3. To be specific, one
can say that if f is twice differentiable at zo, then since f’(z) has either a
maximum or a minimum at zo, we must have f”(zo) = 0.

Now if the second derivative f”(z) is defined on U(z,) and has one sign

] o
everywhere on U~ (zp) and the opposite sign everywhere on U™ (zp), this

is sufficient for f’(z)